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Geometrical and transport properties of random packings of spheres and aspherical particles
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Random packings of grains of arbitrary shape are built with an algorithm that is mostly applied to spheres,
ellipsoids, cylinders, and parallelepipeds. A systematic account of the main geometrical properties such as the
porosity, the reduced specific area, etc. is given. The conductivity, the permeability, and the dispersion are also
systematically determined and they are shown not to depend upon their mode of construction.
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I. INTRODUCTION tational degrees of freedom. Whatever the particle shape,
minimal porosities are obtained for unit aspect ratios. Oblate
Grain packings have attracted considerable interest for gllipsoids are a special case, where a strong ordering in hori-
long time as a model for various types of porous media, suckontal layers develops. For sphere packings, our results agree
as geological materials like soils, etc. Of course, regulalVith previous data for random loose packings.

packings have been extensively studied, since their SimplFan?j%?Tt:onalc\liirlf sdeégtfgué?iggectéicsegggnprgﬁgrt%gs|8rf g:se
geometries make an analytical or semianalytical determin P gs. ' ! y

4 . . : aBersion are successively considered. The governing equa-
tion of their properties achievable. However, they do nOttions and methods of solution are recalled first from earlier

account for the random character of most natural mediay s A unique power law relates the conductivities of all
Therefore, we shall not dwell on these models, and focughe packed beds to their porosities, regardless of the particle
rather on three-dimensional random packings. , shape, in agreement with the classical Archie’s law. Perme-
A general numerical algorithm was devised to simulategpjjities are likewise related to porosity only. The data are
the random sequential deposition of nonoverlapping graingyccessfully compared to various models, and a relationship
with arbitrary shapes. The model is three dimensional angetween the Kozeny constant and the grain asphericity index
accounts for translations and rotations of the particle durings proposed. Finally, the longitudinal and transverse disper-
their settling. To the best of our knowledge, these featuresion coefficients in beds of ellipsoids depend very weakly
were never found simultaneously in previous simulationsupon the particle aspect ratio. The numerical results are in
The algorithm was applied to various particle shapes andery good agreement with numerous experimental data for
aspect ratios. The main geometrical and transport propertieg@rious granular media.
of the resulting packed beds were systematically determined. Some concluding remarks end this paper. Although the
Comparisons with prior numerical or experimental data arejeometrical properties of randomly deposited packings de-
made whenever possible. pend upon the shape of the constituting grains, their transport
Most of the enormous literature on random packings acProperties do not depend upon their mode of construction,
cumulated during the last decades can be found in receffhen beds with identical porosities and equivalent particle

surveys[1-5]. Brief specific surveys are made in some sec-SiZ€S are compared.
tions of this paper. S Il. CONSTRUCTION OF RANDOM PACKINGS

This paper is organized as follows. Section Il is devoted
to the construction of random packings. Earlier algorithms, A. Literature survey
which ‘mostly addressed'sphericail'grains, are priefly SUr The packings investigated in this paper result from the
veyed. Then, the sequential deposition algorithm is detailed.ynqom sequential deposition of nonoverlapping grains as in
The search for the rest position of a particle that settles undgp,e pioneering work of Vold6]. In such a ballistic deposi-
gravity combines steepest descent and conjugate gradiefin, the grain trajectories toward their final position are built
methods. A weighting coefficient is introduced to favor explicitly, which ensures that a particle can actually reach its
translational or rotational degrees of freedom. position during the genesis of the packing. Similar algo-

The geometric properties of the random packings are adithms were used by many authors such as Visscher and Bol-
dressed in Section Ill. After a short review of the varioussterli[7] who included a periodicity condition along the hori-
conceptual and experimental characterization tools, beds aontal directions, in order to reduce the lateral wall effects
spheres, ellipsoids, cylinders, and parallelepipeds with vari¢cf. [2] and references therein for a study of these wall ef-
ous aspect ratios are considered and many novel results dexts. These authors generalized also the method to bidis-
given for porosity, specific surface area, orientational orderperse sphere packings. Today, such simulations can be done
ing, and correlation function. Larger porosities are obtainedor samples of several millions of spheres.
when either rotation or translation of the settling particles is All the aforementioned studies share a few common fea-
strongly favored; in between, all the properties are weaklytures. They operate in a continuous space, a feature that im-
sensitive to the weighting between the translational and roproves precision. The particles are dropped one at a time.
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The grain interactiondi.e., the nonoverlap conditigrare

handled analytically; this speeds up the simulations, but lim-

its the applicability to very simplémonodisperse or bidis-

perse collections of spheres. The particle does not move

anymore after settling. Therefore, the interactions between s
the particles are limited to the exclusion condition between 7
the currently settling grain and the static configuration of the
current bed. ,

These numerical works have their experimental counter- /
parts. For instance, Bacet al. [9] deposited glass beads in \/
water. Onada and Liniggd 0] also deposited glass beads in T3S -

a viscous fluid, under microgravity conditions by matching 212& /
the densities of the fluid and solid phases. 2lgml

Rosatoet al. [11,12 and Buchalter and Bradleyl3,14
tried to take into account the interactions between the settling ,
particles, which may become significant at higher deposition
rates, for example, during the settling of concentrated sus-
pensions.

Few attempts have been made to account for the collec-
tive rearrangement of grains within the bed by application of ;
Newton’s laws of motion. Yen and ChaKki5] accounted for
interparticle forces but not for hydrodynamic forces. How-
ever, various procedures have been devised to simulate reor-
dering due to shaking or vibratii§]. A first family of meth-
ods increases the packing fraction, by biasing the ballistic
deposition procedurgl6,7]. Other authors allow rearrange-
ments once a sequentially deposited packing has been built
[17,13.

For the sake of completeness, let us mention briefly a few G, 1. schematic diagram of the unit cell with periodic bound-
totally different non-ballistic models that were devised by ary conditions; illustration of some geometrical notations.

Jodrey and Tory 18], Larson and Higdoh19], and Martys

et al.[20]. Other authorge.g., Torquato and StdlP1]) study  elevation. Finally, the interactions are reduced to steric ex-
the properties of random packings whose morphology resultslusion. A variant of this rule has been devised to simulate
from thermodynamical equilibrium hypotheses, withoutshort-range attractive forces, which could create permanent
building them. Finally, purely geometric construction proce-links between grains. After contact, a settling grain can be
dures have been devised, such as tetrahedral tiling allowed to rotate around the contact point without gt
Voronoi cells, in order to maximize the packing fraction the contact may move if the grain rolls on the heBor
(see, for example, Dodd22]). instance, for parallelepipedic grains, if a vertex comes in

Packings of nonspherical particles have not been comeontact with an underlying plane solid surface, the particle
puted often in the past and they were only addressed in someould rotate until one of its edges and eventually one of its
recent works by Buchalter and Bradlg¥3,14 for ellipses faces becomes tangent to this surface.

/

and ellipsoids in two and three dimensions. An interesting feature of our algorithm is that each par-
ticle may have any size and shape, provided that it can be
B. Sequential deposition algorithm described in a spherical polar coordinates syste¢) at-

Our random packings result from the successive deposf;%ﬁsr?]deg ltthg);;lrtiscllneg:g &/:f'il#%ec(ij El;cthy(ﬁ,@- The inner

tion of grains in a “gravitational” field. The grains are in-
troduced at a random location above the bed already in place, r<p(6,9). (1)

and fall until they reach a local minimum of their potential

energy. Sometimes, a dynamic language is used, but th@bviously, any convex particle shape can be described by
reader should not be misled, since the Newton’s laws oEq. (1). In this paper, only orthotropic particle shapes have
motion are never solved. During their fall, any displacementeen consideredellipsoids, circular cylinders, parallelepi-
and rotation that contribute to lower their barycenter are alpeds. Of course, the particle referential is aligned with its
lowed. principal axes.

As a general rule, a mobile particle is allowed to slip The position of a particle is represented by the location
freely on the bed surface as long as the elevation of the="'(x,y,z) of its barycenter, and by a setof three angles
barycenter can be diminished. Moreover, each elementarthat give the orientation of the particle referential, with re-
displacement of a grain is independent of its previous posispect to the coordinate system; the superscript denotes
tion and orientation increments. However, as described bdhe transportation operator. Theaxis is oriented upwards.
low, an adjustable parameter favors either translation or roThe grains are deposited in a square vertical box, with a flat
tation of the particle, when both motions could lower its bottom at z=0, and periodicity conditions along the
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andy directions, in order to avoid the well-known hard-wall planes to the contact points form a dihedron, and the optimi-
effects(Fig. 1). zation in Eq.(2a) is performed by imposing additional con-
The trajectory of a grain during its settling is built by straints to Eq(2b), thereby reducing the degrees of freedom.
small elementary steps. Suppose that its current position arithe grain is forced to move along the longitudinal axis of the
orientation are andw. Let x="(x,y) be its horizontal posi- valley, and as a result, it escapes faster from the trap.
tion. The first step is to determine the number and the posi- Very often, double contacts cannot be detected before
tions of the contact points with the bed, below the grain. Thigprogression becomes exceedingly slow. When this happens,
is done by scanning the surfaces of the grain and of th¢he steepest descent method is replaced by a conjugate gra-
neighbor particles that belong to the bed. Two or more sidient algorithm. In this latter algorithm, all the directions of
multaneous contact points are a statistically unlikely eventdisplacement are conjugatddssentially normalwith the
except in the very late stages of the settling, which are speadirections of the previous steps. This is less efficient than the
cifically addressed, as described below. The most commosteepest descent algorithm when the grain slides freely along
case is a single contact point, and one has to determine tlelong inclined regular surface and for this reason the latter is
combined horizontal translatiothx and rotationdew, which ~ generally preferred; but in the kind of traps mentioned
allow the steepest descedz of the particle barycenter. For- above, the right direction is almost immediately found. How-
mally, we consider the function giving thgocally) lowest  ever, when the grain goes back to a larger region, the conju-
elevation and orientatioz(x,w), and evaluate its gradient gate gradient algorithm becomes again less efficient than the
V,. This is done analytically, since the normal and tangentiakteepest descent method and it is replaced by it.
vectors to the contacting surfaces can be derived from the Let us mention the specific treatment of triple contacts.
definitions(1) of the particle shape. Note that this quantity is This situation is very uncommon if the grain has not reached
purely local and that it takes into account the detected conits final rest position. Then, the analytical evaluationVofz
tacts, but not the possible presence of the other close solilecomes untractable because of the very complex limitations
walls. Moreover, it ignores the curvatures of the grain and obf the rotational degrees of freedom. The optimizati@a is

the bed surfaces. restricted only to translational displacemetfea=0).
The direction that yields the steepest descent is the couple The settling of the grain ends up when its barycenter can-
(8%,6w), which maximizes the absolute value not be lowered by more than a quantity neither by the
steepest descent, nor by the conjugate gradient method. In
62=|V,z- 8x+V 2z b0 (28 this final situation, it rests on three simultaneous contacts

with a probability of about 0.8 for ellipsoids, and of about

At this stage, the amplitude of the displacement is Unknowr 5 ¢, sharp edged particles such as cylinders or parallelepi-
and it is arbitrarily set to 1; hence, peds.

Various complications may occur, that are fully described
by Coelho[23]. For the sake of clarity, the overall deposition
h algorithm is sketched in Fig. 2.

X+ R25e?=1. (2b)

Note that the angular incremedb is weighted by a lengt
R, which is kept constant for a given particle, and is gener-
ally equal to the radius of the sphere with the same volume. C. Parameters of the numerical simulations
Note, however, thaR can be chosen_to tune the preferential
motions of a particle. Small values Bf favor translationsx _ ] ) _ )
in Eq. (23 since the particle will lower its position mostly by ~ Only packings of identical particles with three symmetry
translations. The reverse holds for large valueRof planes are mvc_astlggted in this paper. EI_I|p50|daI, cylindrical,
Once the directioriéx,dw) of the displacement has been and parallelepipedic grains were considered. They are de-
deduced from Eq(2), it is applied to the particle with an fined by their semiaxesl{,l,,13=1,), two of them being
ampjitude A, small with respect to the particle siz(eay equal. For c_onvenlence, the semiminor and semimajor axes
A<R/5). The actual lowest possible positiah of the grain ~ are aiso defined by
at (x+Adx,w+Adw) is evaluated. Note that this is done )
by using the same algorithm as for the detection of the con- I=min(ly,15),  L=maxly,l). )
tact points, which scans the surfaces of the grain and 06

the neighbor particles that belong to the bed. Finally, the blgte (prplate) .pargcles corregpond th =1 (I.lzl‘).' Th?
steric condition is satisfied within a tolerance.g., <R/ particle orientation is characterized by the axial unit veator

1000 alongl, which is oriented upwardg=ig. 1).
This steepest descent method is recursively applied as The following quantities are introduced for later use. The

long as a significant downward progress is possible. HOW_equivaIent radiu®, is the radius of the sphere'with the same
olume. For example, for an ellipsoidal particle,

ever, it happens very often that the settling grain enters @~ '173 »/3 ! ;
“valley” between two opposite solid surfaces. The main »=11712". S, is the surface area of the sphere of radius

slopes of these surfaces can be directed in almost opposiF@‘ Fmally, the sphericity indes is equal toS,/S, whereS
directions, and the grain starts bouncing from one side t&° the grain surface area.

another, with little vertical progress because the search algo-
rithm is unable to find the major downstream direction of the
valley. If at some stage, two contacts are simultaneously The packings are built by sequentially depositing a total
found on two opposite faces within a tolerante, a new number of N, particles in a “box” with a squarewXw
direction of progression can be enforced. The two tangentidhorizontal cross sectiofFig. 1) and a flat hard bottom. In

1. Definition of the grains

2. Overall dimensions of the samples
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the accuracy of the search for the equilibrium positions, but
they do not influence the final result, provided that they are
small enough.

Free Fall
First Contact

4. Statistical fluctuations and sensitivity
to the numerical parameters

SteePeStDe“STntA‘g"ﬁ“‘m‘ Since the building of the packed beds is a stochastic pro-
cess, their properties are expected to show some statistical
! fluctuations. It is useful to quantify this dispersion, in order
Displacement along the steepest direction, to set the values oA\, Ar, and Aw accordingly. Since very
with amplitude A fine requirements are very costly in terms of computational
Surfacesm*w Totor— ne time, it is pointless to try to achieve an accuracy much
the actual new elevation smaller than the statistical fluctuations. It may be useful to
- anticipate on the discussion of Sec. Ill.
@ A too 5@ Systematic studies on the statistical fluctuations were per-
yos formed. For instance, the standard deviatigrof the poros-
Apply Displacement, ity for beds of spheres of radi® is 0.0048 wherw=10R
ves while the average porosity is 0.4121. Larger fluctuations
were expected for aspherical particles. The porosities of
three realizations of packings of oblate ellipsoids with
[./1,=5, w/L=7.02, A=R,/5, Az=R,/50, andAw=0.87°

ranged between 0.414 and 0.449. This order of magnitude of
the fluctuations is valid for all the simulations reported in
yes this paper, except for very flat oblate ellipsoids with
I,/1,=0.1. In the latter case, the grains tend to settle with
their largest section horizontal. This would yield a well-
yes organized bed with a porosity comparable to that for less
aspherical grains. However, a few grains may get clamped in
inclined positions, with their edge stuck between two par-
ticles. This rare event has dramatic consequences, since it
disturbs the arrangement of the surrounding particles over
distances of ordek. This is illustrated in Fig. 3, for ellip-
soids withl,/1,=0.1, andw/L=7.43. These two beds have
order to minimize size effects, periodicity conditions are ap-porosities 0.395 and 0.569. Such effects are less critical for
plied along the two horizontal directions and all subsequenprolate particles, since the disturbances induced by one grain
measurements and calculations are performed in a cubic subre weaker, and are smoothened for moderately oblate par-
sample of volumew?®, which starts at a height, over the ticles, because larger ratiegL could be used.
bottom of the packing. In view of these statistical fluctuations, the porosity can-
The sample sizer was always taken much larger than the not be used to test the influence of the search paramaters
particle major axis, with &w/L <20, except for very elon- Ar, and Aw. Instead, the overlap between the solid grains
gated shapes with/l=10 where 3<w/L<5. The rejected was considered. The complete study is reported by Coelho
layer thicknesdh, is always at least equal /2. Porosity [23]; it may be summarized by saying that in the worst cases,
measurements within layers at increasing elevations showhe average overlap thickness is smaller tRaf00.
that the disturbances induced by the flat bottom do not ex- _
tend beyond this range. 5. Computations

For each particle shape, three main series of simulations
were run, which cover the whole range of aspect rdtjfs ;

Four parameters have been introduced in the sequenti&r the sake of completeness, their parameters are summa-
deposition algorithm described above. One of them, theized in Table I.
weighting lengthR in Eq. (28 has been varied from half the Except in the special case of spheres, the numerical com-
minor axis up to twice the major axis of the particles, and itputations for the deposition of a single grain require about 20
does influence the resulting packings, as discussed in Ses.on an IBM RS6000-560 workstation. The total time con-
IV. Since the characteristics of the packings were foundsumed to build the samples used in this study amounts to
weakly sensitive tdR if L/2<R<L (and the minimal poros- about 500 h, including the burden to build the rejected lower
ity is obtained in this range most simulations were per- layer, and the upper layer of comparable height.
formed in this condition. However, it should be emphasized
that in Sec. 1V, the transport properties of the packings canil. GEOMETRIC PROPERTIES OF RANDOM PACKINGS
be related to their geometrical characteristics regardless of
this construction parameter.

The three other parameters involved in the deposition al- The purpose of this subsection is to summarize the vari-
gorithm, namelyA, Ar, and Aw, control the step sizes and ous characteristic geometrical parameters that are defined in

Significant
Progress ?

Final Test :
Check 14 positions nearby.
Lower ?

o

Settle Particle

FIG. 2. Sketch of the overall deposition algorithm.

3. Parameters of the search algorithm

A. Geometrical description of random packings
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TABLE I. Search algorithm parameters and typical sample con-
tents(number of particleiN,).

Series
1 2 3 Tests
R (0.2-05L (0.1-0.3 L 0.5-1) L (0.5-1) L
A R,/5 R,/5 R,/5 R,/20
Ar 1/100 1/100 R,/50 R,/200
Aw 1/2° 1/2° 5/6° 1/2°
Ny 50-500 150-300 300-600 300-600

Access to these parameters is more or less easy depending
on whether one deals with a real or a synthetic sample.
Among commonly used experimental methods, one can cite
image analysis, gas sorption, nuclear magnetic resori@fice
mercury intrusion porosimetr}25]|, and finally, diffraction
patterns from small angle scatteri(@AS) [3].

The situation seems easier when the packed bed is de-
scribed numerically, for example, by all the grain positions
and orientations. Volume fractions, specific surface area, ra-
dial distribution functions, and orientational correlations are
indeed readily available. Diffraction patterns equivalent to
SAS measurements can also be obtained by Fourier trans-
form [13,14]. However, some quantities are still tricky to
determine. The coordination numb&rwhich is mostly used
in theoretical approachg6], can easily be underestimated
by failing to detect contacts. The determination of the con-
nectivity and pore size distribution of the pore space is also a
difficult task as can be seen [@7-30.

In this paper, in addition to porosity and specific surface
area, ordering parameters are investigated, such as the radial
distribution function, the positional ordering via the two
point phase correlation function, and the orientational order-
ing via angular correlations.

B. Porosity

The simplest characteristic quantity of the packing geom-
etry is its porosity, or void volume fractioa The influence
of the construction paramet& was investigated first. Pack-

FIG. 3. Two packings of oblate ellipsoids with/I,=0.1. The ings of "’_ISphericall ellipsoidgwith 1,/1,=1/5, 1/‘/E a.lnd
porosity is 0.395(a) and 0.569(b). The overlap of two grains is V10), cylinders (with I,/1,=5), and parallelepipedgwith

indicated by the arrow irtb). l,/1,=1/y10 and y10) were built with various weighting
lengthsR,; the other parameters are identical to the ones used

" o .. ..__inseries 3 in Table I. The resulting porosities are plotted in
[24_'25'3‘ Ir_1 ad_d|t|on to t_he determination (?f the con_stltutmg Fig. 4(a) against the rati®&/L. Larger porosities are obtained
grains, which is of no interest for numerical packings, theg,: smal| and large values of this ratio. This can be explained
guantities to be characterized fall into several categonesby the fact that for very smallarge R, the deposition algo-
namely the global parameters, the pore space morphologyithm first tries to lower the grain elevation by shifting its
and ordering. The global parameters include the poresity  horizontal position(by rotating iy without rotation(horizon-

the solid fractiong=1-¢, and the specific surface araA  ta| shift), whereas for moderatR all the grain degrees of
variety of mathematical tools has been introduced to charadreedom are simultaneously considered. It is remarkable that
terize the morphology of the pore space, such as varioufr all particle shapes and typésrolate or oblatg the mini-
types of one- or two-dimensional size distributions, meammal porosity is always obtained f& ranging fromL/2 toL.

free path, etc[24,3]. Finally, various parameters have beenTherefore, it is expected that the packing properties are
defined to describe the short or long range ordering of theveakly sensitive tdR, if it is set in this range.

grains within the bed, such as the coordination nuniber Consider now the complete data in Fig. 5. The porosities
(average number of contacting grainthe radial distribution of all the packed bed samples are plotted against the ratio
function g, and the orientational or positional ordering indi- 1,/l,. According to Fig. 4 and the range & in Table I,

ces. porosities of series 2 are expected to be larger than for series

(b)
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FIG. 4. The porosity (a), angular correlation® (b), andM (c) FIG. 5. The porositye of packings of ellipsoidga), cylinders

vs the ratioR/L. for.beds. of oblatg—) or prolate(---.) particlgs. (b), and parallelepiped&) vs the aspect ratib;/l,. The numerical
Data are for eII|p30|dS with./1=5 (O) or \/E (.), Cyllnders with data(solid |ine3 are for series IO)’ 2 (+)’ and 3(*) The broken

L/I=5 (+) and parallelepipeds with/I = /10 (). line in (a) corresponds to the data pi4] and the dotted line to

1, which are themselves larger than those of series 3. This ’Eose of 34]. Thg crosses itb) and(c) are data from2]. In (b), the
actually observed only for the most extreme size ratios. Fo ditlfsog[?’;] for mica particles are denoted Myand those for mylar
L/1<5, the statistical fluctuations and maybe the slight dif- yeo.

ferences in the search parametdrsAr, andAw prevent an

obvious display of this ordering. As a matter of fact, series 3packings increases with)/l,, whereas it remains almost
with a largerR but looser parametef@dr,Aw), often yields  constant for ellipsoids. This will be discussed below in rela-
the largest porosities for sharp-edged particles. tion with the orientational ordering within the bed.

The curves for the various particle shapes share a few Finally, let us compare these data with the available nu-
common features. They all show a minimum for the unitmerical and experimental results of the literature. It is natural
aspect ratio. For prolate grains, the porosity increases witto start with random packings of monodisperse spheres. Ex-
[,/1,. For very elongated particles, all the curves seem tgerimental data are somewhat scattered because of the vari-
converge toward a common value. This is because the graious packing construction processes and porosity ranges from
packings become bundles of needlelike particles, whos8.336 up to 0.44%31,9,10,32,1 The porosity of real pack-
cross sections have little influence on their relative arrangeings decreases with the apparent gravity, and with subse-
ment. However, for oblate grains, different behaviors are obguent shaking or vibrating procedures. It is generally agreed
served for ellipsoids and sharp-edge partidiedinders or  that 0.3644-0.0004 is the lowest porosity achievable with-
parallelepipeds The porosity of cylinders and parallepipeds out any significant increase of short-range orfie} Our
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0.2 ' — X . —

10 10

101 11/12

FIG. 6. The porosity of packed beds vs the aspect rdtji ,. The numerical datésolid lineg are for ellipsoidgO), cylinders(+), and
parallelepipeds+). The broken line is modd€Kl) and the dotted line is modéb). The large symbols are the data[8#] for ellipsoids(O)
and of[2] for cylinders(+) and for parallelepipedé).

simulations, which yielde=0.402, are in the middle of the ¥ =0.079+0.831p+ 1.53¢°, (4
range 0.46:0.02 quoted by Berrymafil] for the so-called
random loose packings; they also agree with the recent simu- q
lations of Jullien and Meakifn8] and Barker{5], who ob- p=——m V. (5
tained e=0.4185. (36m)

Numerical and experimental data for aspherical grain .
packings are much scarcer and our results can be consider&f€se models due to Warren and Gernja] and Thies-
as the first systematic study of such particles. A short list ofVeesieet al.[34], respectively, are compared in Fig. 6 with
porosities for cylinder and parallelepiped packings is quote®!r data of series 3 and the various experlment_al data men-
from various sources by Germaf2], Table 5.). They are tioned above. The constagtwas set equal to 2.9 in or(_:ier to
compared with our results in Fig. 5. Although they showmaich our results for sphere®’=1). Model (4) describes
comparable variations with the aspect ratidl ,, they are falrly well the experimental Qata for cylindrical grains pac.k-
significantly lower than the numerical datay about 0.10 for ~ INgS, and mode(5) agrees with our data for prolate ellipsoid
cylinders and 0.20 for parallelepipedsThe data of Kim packings, but thes_e correlations based on the sphericity index
et al.[33] for beds of mica particles are consistent with our@re clearly not universal.
results as shown in Fig.(B), while the values for mylar
disks are somewhat lower. Submicronic silica-hematite pro- C. Specific surface area
g:seg;piﬁzgz-vv\(/eg:sgeaﬁ)ﬁ[rg%,apr?ep;grlf)esiyb{v:sfx?;fﬁrgéo The second quantity that is widely used to characterize

during permeation, since the packed beds expand in the re%frous media, and thus grain packings, is the specific surface

) . easS, defined as the total solid surface area per unit vol-
state du'e to surface charge repulsive forces. Their data, plou'me, multiplied by the length scalR, . For packings of
ted in Fig. %a), are somewhat larger than ours, perhaps ber : - D v

. |detnt|cal grainsS is given by

cause of these repulsive forces, and because the beds are no
formed by a sequential sedimentation process, but rather by a 3¢
fast convection driven compaction. For this latter reason, S:W' (6)
these packings could be better described by the numerical
simulations of Buchalter and Bradl¢$4], whose model ac-
counts for the particle interactions during the packing con
struction.

Finally, let us mention two purely empirical correlation
used to predict the void fraction in random packings of as-
pherical grains which relate the sphericity ind#to the

m
solid fraction ¢: R,

The hydraulic radiusn is defined as the ratio of the total
pore volume to its surface area. For packings of identical
s particles, one has

e €V
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(a) whereg is the unit vertical vector and the angular brackets
s 5 - denote the average over all the particles. The constants are
set so thatQ=0 if the axial vectorn (see Sec. Il CLis
uniformly distributed over the unit sphere, a@d-1 if all the
particles lay flati.e., withn parallel tog for oblate particles
andn perpendicular t@ for prolate ones The second one is
a pair correlation of the particle orientations

M= 3{((cog 2 cos *(f;- A )+ 3}, ©)

where the double brackets denote the average over all par-
ticle pairs. AgainM =0 if the axial vectors are uncorrelated,
andM =1 if all the particles are aligned.

The influence of the construction parameRrupon Q
* andM was also studied and the results are plotted in Figs.
4(b) and 4c). Both parameter®) and M are consistently
found maximal forR equal to the particle semimajor axis
even in cases where only weak angular correlations are ob-
served. Underweighting or overweighting of the grain rota-
tions during their fall both tends to lessen the global ordering
within the bed.

The complete data foQ and M are plotted versus the
aspect ratid /1, in Figs. 8 and 9, respectively. Oblate and
. prolate particles clearly exhibit very different behaviors. The
10 10 10" 1,1, angular correlatio is almost unity for very flat ellipsoids.
This explains why the porosity of oblate ellipsoids is almost
insensitive to the aspect ratio. If the grains lie almost flat, the
bed is actually equivalent to a bed of spheres, dilated along
the horizontal directions by a ratld/|, which does not affect
its void fraction.

The specific surface ares is plotted in Fig. 7a) as a Due to their sharp edges, flat cylinders and parallelepi-
function of the aspect ratid,/I, for the various particle Peds are not deposited as smoothly as flat ellipsoids. How-
shapes. Only data for series 3 are displayed since identicgVer, significant correlations are still observed, wgh-0.6
trends are observed with series 1 and 2. All the prolate parahd 0.5 for cylinders and parallelepipedsiati,=0.1, re-
ticles follow the same behavior, with a slight decreasesof spectively. The singular nature of line and point contacts also
as the particles become more slender. For oblate cylindefgduces stronger fluctuations and a stronger sensitivity to the
and parallelepipedsS increases slightly when the grains be- Simulation parameters. For identical aspect ratios, the highest
come thinner. However, a different trend is observed for obQ is always associated with the lowest
late ellipsoids with a sharp increase of the surface area. This For oblate particles, the pair angular correlatign be-
results from the smooth ordering of the particles. As alreadytaves very much lik&, though it is slightly smaller. This
pointed out, the porosity remains roughly constant whatevefneans that the particle axes are evenly distributed around the
the aspect ratib,/|,, whereas the asphericity inddx drops ~ Vertical direction.
for oblate spheroids. Hence, their rafian Eq. (6) increases. For a unit aspect ratio, botQ andM almost vanish, as

The hydraulic radiusn is plotted in Fig. Tb) as a func- could be expected. Note that these parameters are undefined
tion of the aspect ratio for the same configurationsSas for spheres.
above. As a general rule, for a given value lgfl,, the The observations for prolate particles are totally different.
ellipsoidal and parallelepipedic grains yield the smaller andrhough it seems tha® decreases with, /I, for ellipsoids,
larger ratiosm/R,, respectively. The hydraulic radius in- no clear trend can be pointed out for cylinders or parallelepi-
creases when the particles become more aspherical, excdjftds.Q undergoes very large statistical fluctuations and is
again for oblate ellipsoids. In this case; batland ¢ in Eq. ~ Very sensitive to the search parameters, with the hierarchy
(7) remain roughly constant, whil# drops down to 0.418 between series 1, 2, and 3 expected from Fip) 4nd Table
for 1,/1,=0.1. I. Unlike for oblate particles, large differences@have no

significant influence on porosity, as shown in Fig. 8. How-
D. Orientational grain ordering ever, the pair correlatiodM is always very close to zero,
because of the absence of interparticle arrangements.

The numerical simulations of Buchalter and Bradéy]
for three-dimensional random packings ellipsoids are plotted
in Fig. 8. For prolate particles, they are found between series

1A 1 1 and 2, where the angular displacements are slightly
_ i{(cog2cos'(R-9 1) +3} (11<ly) (8  Weighted in Eq(2a. For oblate particles, they fall way be-
—3{(co§2cos {(R-@N+3} (I>1y) low all our simulations. This probably occurs because in

10 10 10" 1/,
(b)

78

0.4

FIG. 7. The reduced specific aréa(a) and hydraulic radius
m/R, (b) vs the aspect ratib/l, for packed beds of ellipsoid®),
cylinders(+), and parallelepipeds&).

The orientational grain ordering is characterized by two
parameterQ and M. The first one correlates the particle
orientations with the vertical axis
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10™ 10° 10" Iy, 107" 10° 100 1/,
FIG. 8. The orientational ordering correlati@ in beds of el- FIG. 9. The orientational ordering correlatidf in beds of el-
lipsoids(a), cylinders(b), and parallelepiped®) vs the aspect ratio  lipsoids(a), cylinders(b), and parallelepiped&) vs the aspect ratio
I./1,. Same conventions as in Fig. 8. I1/1,. Same conventions as in Fig. 8.
their Monte Carlo simulations, all the grains simultaneously e=7. (11)

settle in a concentrated suspension; thus, their rotational de-
grees of freedom are hindered, especially for oblate particles. ] ] o .
It may also result from too large angular steps in the randond he two-point correlation functioR is defined as
displacements. This step is not reported in Buchalter and

Bradley[14], but was taken equal to 6° in a former similar

work for two-dimensional ellipsoidal grairfd.3]. R(r)=

[Z(X)—€][Z(x+T)— €]

p— (12
[Z(x)—€]?
E. Phase correlation function

Let Z denote the phase function describing the void-solidlit measures the probability of finding the two end points of a

distribution within the bed: segment of lengthr within the same phase, void or solid.
_ _ When the medium is macroscopically homogeneous, the sta-
7(r) = 1 if revoid space (10 tistical averages can be replaced by spatial averages. If the

0 otherwise. material is isotropicR is a function of the distance=|r||
only. Grain packings resulting from a deposition process un-
The statistical average & (denoted by an overbpais the  der gravity are not expected to be isotropic, but all the hori-

porosity zontal directions play equivalent roles. Therefore, in the fol-
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(a)

osF

i
0.5 "

FIG. 10. The correlationR,, (a) andR, (b) in beds of ellipsoids
vs the reduced distanaéR, . The aspect ratid,/l, is 0.2(---), 1

41'/Rv

tion curves look like a stretched version of the former. This
is easily understood for ellipsoids, since they are mostly ar-
ranged with their largest section horizon{@=0.9). The
packed bed is approximately equivalent to a packing of
spheres of radiuk with the vertical axis scaled by a factor
L/I. Thus, the correlatioR,, is expected to be the same as
for a packing of spheres with radilis Accordingly, the first
zero crossing oR,, for flat ellipsoids is found at~0.92..

Correlations for packings of prolate particles follow a to-
tally different trend. The first part of the curves, up to the
first zero crossing, is very close to the curve for unit aspect
ratio. Beyond this point, the correlations vanish almost to-
tally.

Consider now the correlatiori®, along the vertical direc-
tion. Note first that for sphere packindg, is almost identi-
cal toR,, . Hence, the material is fairly isotropic, although it
results from a construction process that is anisotropic in
character. This holds in a lesser respect for the other particle
shapes; the initial decrease of the curvesRgy andR, are
identical, but the first zero crossing B is slightly shifted
further away from the origin. For the same reason as above,
R, for oblate ellipsoids can be deduced frdn for spheres
with radiusl. The first zero crossing is about L.Finally, R,
for packings of oblate particles starts with the same initial
slope as for unit aspect ratio, but drops to zero more rapidly
and vanishes beyond this point.

For spherical grains, positional correlations are very often
characterized by the so-called radial distribution function
g(r), which measures the probability of finding the center of

(—), and 5(-----). a grain at a given distance from a reference [Bie-39:

lowing Ry,(r) and R,(r) will denote the correlations 1 dMr)

evaluated withr in Eq. (12) set parallel and normal to the g(r)= 4712 dr (15
T

horizontal plane, respectively.

Note that the functiorR includes information relative to
the specific surface area. It may be shown th related to
the initial slope ofR by

whereN(r) is the average number of grain centers within a

sphere with radius around the center of a reference particle.

Since M(r) may have stepwise variations, the derivative in

Eqg. (15 is not always defined in the usual sense. Besides,
(13)  these discontinuities are a direct measurement of the bed

r=0 coordination number.

Results for ellipsoids are given in Fig. 11. In Fig.(al1

e center-to-center distance of contacting grains may vary

from 2| to 2L. A sharp increase of aroundr = 2R, is still

noticeable for oblate and prolate spheroids with=2, but

vanishes for extreme aspect ratidg| =5). The numbet\V'

has been normalized by the solid volume fractiprin Fig.

11(b). It is compared to its asymptotical long-range value

S=—4e(l-€)R, —

This relation holds even for anisotropic media provided thatth
dR/dr is averaged over all the unit sph¢&6]. For packings
of identical grains, Eqg6) and(7) can be used to relate the
initial slope ofR directly to the asphericity inde¥ or to the
hydraulic radiuam:

dR 3 1

dr| _,~ 4€VR,  4¢m’ 19 Me=(rIR,)>. (16)

The correlation®,, and R, have been evaluated on all the For aspherical particles, the departure from this regime van-
samples considered in this paper. For the sake of clarity anighes very rapidly, and becomes negligible fer3R, .
brevity, only data relative to series 3 and ellipsoids, for as- A complete exposition and discussion of these data for all
pect ratios 1/5, 1, and 5, are reported in Fig. 10. The correshapes can be found j23].
lations along the two horizontal directiomsandy were al-
ways found identical within the statistical fluctuations.
Consider first the correlations along an horizontal direc-
tion R,, . The distances are scaled by the equivalent radius of
the particlesR,. A first zero crossing at a distance
r~0.9(R, is followed by an anticorrelation, up to~2R,.
No significant correlation remains beyond~3R,
(IR|<107?). For oblate particles with;/1,=0.2, the correla-

IV. TRANSPORT PROPERTIES OF RANDOM PACKINGS
A. Governing equations and methods of solution

In this section, the macroscopic effective coefficients for
the basic transport processes by conduction, convection, and
dispersion in random packed beds are determined. The gov-
erning equations and their methods of solution are briefly
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(@ whereT is the local field, together with the no-flux boundary
A 15 ; ' ' condition at the wallS, , when the solid phase is assumed to
be insulating
10l { m-VT=0 onS,, (18)

wherem is the unit vector normal 1S, .

VT is assumed to be spatially periodic with a peraid,
in the three directions of space. In addition, either the mac-
roscopic temperature gradieWifT or the average heat flux,

0 : : _ 1
1 15 2 25 3R, q9=——3 JqR~ds, (19
® (@aNo)® Js
X 200 . - : .
¢ is specified.S is the surface of the unit cell.
These two quantities are related by the symmetric positive
150} definite conductivity tensowr:
100k g=-—o0-VT, (20
which depends only upon the geometry of the medium.
50} In the average, for an isotropic random mediwmis a
spherical tensor equal t@ |. For deposited packings, the
andy directions play equivalent roles, but one may expect a

6 t/R, different behavior along the axis. In the foIIowing,?Xy
denotes the average of the conductivities alongxttandy
axes, which were indeed always found equal within the sta-
reference particle in random beds of aspherical ellipsoids as a funé'—sugal ﬂu_Ctugtlons’ andr, denotes the conductivity in the
tion of the reduced distancéR, . Data in(a) are forl 1/1,=0.2(+), vertical direction. . .
0.5(0), 1 (—), 2(®), and 5(x). In (b), A'is divided by and the 1€ Neumann problerfEgs. (17)—(19)] is solved via a
dotted line is the asymptotic lavl6). seco.nd—order finite-difference formulauon.. A conjugate-
gradient method turned out to be very effective for the prob-
recalled in this paragraph. They were detailed in earlier palem at hand, primarily because it is better suited to vectorial
pers[40—-44. In all cases, the macroscopic coefficients areprogramming than implicit relaxation schemes.
deduced by integrating the local fields, obtained by solving
the transport equations at the pore scale. 2. Stokes flow

Since the packings are macroscopically homogeneous, The low Reynolds number flow of an incompressible

they are considered as infinite periodic media, made of iden: . 7 i
tical unit cells. Note that the packings are indeed built Wiﬂ?Nevvtonlan fluid is governed by the usual Stokes equations,

periodic conditions along the two horizontal directions.
However, when a cubic sample is cut from a deposited bed,
the lower and upper faces do not match each other. This may
affect the computation of the transport properties along the
vertical axis. The content of a unit cell is discretized ihté ) ) )
elementary cubes of siza. The unit cell size isN.a=w.  Wherev, p, andu are the velocity, pressure, and viscosity of
Whenever the center of an elementary cube falls in the solige fluid, respectively. In general,satisfies the no-slip con-
(fluid) phase, the whole cube is considered as filled withdition at the wall

solid (fluid). The following parameters were used in the

computations; for series 1 andI®,=64 and 4R, /a<8; for v=0 on S, (229

series 3N.=48 andR,/a=3 for calculating the dispersivity o
and the permeability and,=64R /a=4 for the conductiv- WhereS denotes the surface of the wetted solid inside the

ity. unit cell. The volumer, of this cell is equal to Kl.a)°. Be-
cause of the spatial periodicity of the medium, it can be
1. Conduction shown(see[43]) thatv possesses the following property:

FIG. 11. The numbelV of particles within a distance of a

Vp=puV?,
(22)
V.-v=0,

The thermal terminology is used here, but the following
developments are also valid for electrical conduction and for
diffusion of Brownian particles whose size is small with re-

spect to a typical size of the medium. Electrical and thermal_ . _ . .
cgnductionggwe both governed by a Laplace equation ll'h|s system of equations and conditions applies locally at
each poinR of the interstitial fluid. In addition, it is assumed

V2T=0, (17)  that either the seepage velocity vectois specified, i.e.,

v is spatially periodic, (22b)
with periodaNcin the three directions of space.
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whereB is a vector field satisfying

1
v=T—j Rv.ds=(a prescribed constant vector (233
0 Ja,

B(R)=B(R)-R (29
or else the macroscopic pressure gradRptis specified,  whereB is the spatially periodic component Bfand is the
Vp=(a prescribed constant vector (23b) solution of 5 )
Since the syster21)—(23) is linear, it can be shown thatis v-V*=V.(vB)-DV’B (309
a linear function ofV p. These two quantities are related by n-VB=n on S, (30D

the permeability tensdK such that

1 L The flow field was first determined by the routine that
v_=—(—)K-Vp. (24)  Yyields permeability. TheB equation was discretized by a
I second-order finite difference formulation and solved by a
conjugate-gradient iterative scherft2].
Because the flow provides a preferred direction, the dis-
ersion tensoD* in an isotropic medium can generally be
written as

HereK is a symmetric tensor that is positive definite. It only
depends on the geometry of the system and thus can be si
plified when the porous medium possesses geometric sy
metries. As before, we denote BY,, the average of the

permeabilities along th& andy directions and byK, the D* O 0

permeability along the direction. 5| o ! oF 0 31
The numerical method that is used here is a fourth order B L=

finite difference scheme identical to the one first described 0 0 DI

by Lematre and Adler[41] and later improved by Coelho o . " .
[23]. In order to cope with the continuity equation, the so-Thexaxis is assumed to be parallel to the interstitial velocity

- .
called artificial compressibility method was applied with a ¥, + SO that they andz axes play an equivalent role. The
staggered marker-and-céMAC) mesh[44] situation is more complex in aspherical packings, and a full

matrix is generally expected instead of E§1). Owing to

the disturbance induced by the mismatch of the upper and

lower faces of the unit cell, vertical dispersion was never
The physical situation can be summarized as follows; &onsidered. The flow was set successively alongthady

neutrally buoyant, spherical Brownian particle is injected atgxes, and the corresponding longitudinal and transvénse

some arbitrary interstitial positioR’ at timet=0; this par-  the horizontal planedispersion coefficients were calculated.

ticle is convected by the interstitial fluid and simultaneouslytqiy averages are denoted By andD* , respectively.
undergoes Brownian motion characterized by the diffusion '

coefficientD. Within the limit of long times, the moments of
orderm of the probability distribution are defined (5]

3. Dispersion of a passive solute

B. Conductivity

The conductivities of all the packed beds are plotted
(25) against the aspect ratig/l, in Fig. 12. Sample results for
series 3 are also given in Table Il. The curves &g are
very similar to the porosity curves in the same packings in
where (R—R’)™ represents then-adic (R—R’)---(R—R’). Fig. 5. For unit aspect ratiosTXy is close to 0.2 for beds of
The probability density is denoted B9(R,t/R’). The two  spheres and cylinders, and to 0.24 for beds of cubes, which

Mm=f (R-R")™P(R,t/R")d°R,

first moments verify{45] have a larger porosity. Our results for sphere packings are
slightly lower than the experimental value of 0.25 reported
lim % v (263 by Pfannkuch46] and Wongget al.[47] for random packings
e dt ' with porosities 0.39 and 0.40, respectively. For prolate par-

ticles, the conductivity increases with/l, up to about 0.5
S 1.d _ for 1,/1,=10. For oblate cylinders and parallelepipeﬁy
lim > at (My,—MM;)=D%*, (26b increases also when the particles become flatter. For oblate
t—oe ellipsoids, the conductivity increases only slightly, as does
. . . . . . the porosity.
Wherev' is the mean intersiitial ﬂl.'“d velocny.veptor ., The vertical conductivityr, behaves differently. For pro-
the portion of the unit cell, occupied by the liquid phase, late particles, it is identical t@?xy, since the packings are
1 roughly isotropic, as shown by the weak orientational order-
vi=— | vd®R. (270  ing (Figs. 8 and 9and by the correlationR,, andR, (Fig.
I 10). However, for oblate cylinders and parallelepipeds,
remains almost constant whég/l, decreases, although the
rb'orosity increases. This results from the layered structure of
the beds, indicated by the paramet&sand M. For oblate
D ellipsoids, the porosity does not increase ghtends toward
D*=— | VB! VBd°R, (29) one. Consequentlyr, decreases significantly, down to 0.02
7L L at|1/|2=01

The general expression of the macroscopic dispersion te
sor D* is given by[45]
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(a)
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b

10' L/,

10 10 10" 1,

FIG. 12. The conductivitiesr,, (solid lineg and o, (dotted
lines) of packed beds of ellipsoid®), cylinders(b), and parallel-
epipeds(c) vs the aspect ratid,/l,. Data are for series (O), 2
(+), and 3(x).

1971

ours. Jacquin49] obtainedm=1.64, «=0.80 for Fontaine-
bleau sandstones in the range Gs@5<0.30. Guillot [50]
also observed a power law for sintered glass beads, with
m~1.6 for 0.2<€<0.40. Her results are somewhat scattered
because of sample heterogeneities; her most homogeneous
samples yieldn~1.4. Wonget al.[47], using their own data
and those of Johnsoet al. [51] for fused-glass beads, ob-
tainedm~2.3, a~3.3 for 0.0%<<0.2 andm~1.5, a~1 for
0.2<e<0.4. Schwartzet al. [52] also obtainedm~1.5 for
€=0.3. Of course, the porosity variations in these media re-
sult generally from various degrees of consolidation by ce-
mentation(for sandstonesor by sintering(for bead$. There-
fore, results for low porosities cannot be directly
extrapolated to looser unconsolidated packings.

If packings of prolate particles were built with very large
aspect ratios, the porosity would tend toward unity, as well
asco. Thus, if a unique expression of the fol8R) is used to
cover the whole range of porosity, the coefficierntas to be
1. A least square fit of the results excluding the ordered
packings of oblate ellipsoids yieldsf. Fig. 13

Ty= €9

(339

Alternatively, the data can be fitted with a correlation coef-
ficientr=0.975 as

0= 0.880-72 (33b)

The data of Kimet al. [33] for beds of mica particles and
mylar disks are also plotted in Fig. 13. The agreement with
our calculations is very good for the mica particles. Mylar
disks yield slightly larger conductivities. Ochoa-Tajeial.
[53] noted that a cell model is able to predief, but over-
estimatesr,, .

C. Permeability

The permeabilities for all the packed beds, normalized by
Rf, are plotted in Fig. 14 versus the aspect rdtjdl,.
Sample results for series 3 are also given in Table Il. These
data can be commented upon in the same way as those for
conductivity in Fig. 12. For unit aspect ratios, the permeabil-
ity K,, for spheres and cylinders is found in the range
2x10 ®Rj=<K,,<3x10 °RZ. Packings of cubes, with a
slightly  higher  porosity, yield 3510 °R<K,,
<4.5x10 3R2. The vertical permeabilityK, is found
equal toK,, for I,/1,=1, as observed for conductivity. Our

The same data fa?xy are recast in Fig. 13 against the bed results for spheres are consistent with many experimental

porosity e. It is remarkable that all the conductivity values, data.
whatever the particle shape and elongation and for all th€.3x10 3<K/r?<4.1x10°3

series(i.e., for a weighting lengtiR from 0.1L to 2L), are

fairly well gathered around a single curve. The only excep0.40 and 0.41,

tion is the small cloud of points above the curveeat0.4,

Chauveteau and Zaitoun[31] measured
and 3.3<10 3<K/r?
<4.7x10 2 for various glass bead packings with porosities
respectively. Pfannkudd5] obtained

K/r2=1.1x10"3% and 2.3«103 for two bead packings with

which corresponds to beds of flat ellipsoids, i.e., to highlythe same porosity 0.388. Guillot|s0] measurements for

ordered packings.

The dependence af,, upon porosity verifies the widely

used Archie’s Law[48]
o=ae™, (32

bead packings in the porosity range 0s38<0.41 yielded
3.2x10 3<K/r?<6.7x10 3. Finally, Bryantet al. [28] cal-
culatedK/r?=2.72<10"2 by use of a network model based
on the geometrical data of Finn¢$4] for a monodisperse
sphere packing. o

For nonunit aspect ratiok,, increases as did,, in Fig.

where the exponent is the so-called cementation factor. It 12, i.e., according to the porosity variations. In particular,
has been measured by several authors on different types pérmeabilities for oblate ellipsoid packings do not differ
material, although always in a porosity range lower thanmuch from that of sphere packings.
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TABLE II. Samples results for packings of series 3. The sample witg the porositye, the orientational parametel and Q, the

number of grains in the samph¢, , the conductivitya_xy, and the permeabilit%xy/Rﬁ are given for various aspect ratibgl,.

[,/1, wi/L € M Q Ny Ty 10°K,,/R?2
Ellipsoids
0.1 7.43 0.395 0.986 0.993 592 0.212 1.59
0.2 9.36 0.428 0.880 0.938 559 0.230 2.29
0.5 12.70 0.412 0.702 0.838 575 0.205 2.02
1.0 12.50 0.403 0.072 0.261 279 0.177 2.16
2.0 10.08 0.415 0.116 0.682 572 0.188 1.77
5.0 5.47 0.567 0.143 0.748 423 0.325 7.39
10.0 3.45 0.688 0.097 0.628 305 0.464 19.62
Cylinders
0.1 8.50 0.669 0.365 0.605 324 0.402 16.65
0.2 10.71 0.540 0.506 0.712 450 0.321 8.17
0.5 14.54 0.472 0.086 0.290 516 0.226 3.39
1.0 18.32 0.448 0.002 0.063 540 0.196 2.58
2.0 11.54 0.459 0.008 0.192 529 0.208 2.63
5.0 6.26 0.580 0.089 0.582 411 0.331 8.36
10.0 3.95 0.693 0.024 0.323 300 0.464 20.25
Parallelepipeds
0.1 9.21 0.714 0.358 0.598 280 0.462 22.06
0.2 11.61 0.628 0.276 0.526 364 0.386 14.23
0.5 14.53 0.531 0.072 0.271 459 0.275 5.76
1.0 19.85 0.497 0.012 0.103 492 0.237 4.33
2.0 12.51 0.519 0.005 0.088 470 0.257 4.76
5.0 6.23 0.647 0.035 0.374 345 0.407 15.61
10.0 4.28 0.719 0.056 0.476 275 0.500 25.47
Oxy
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FIG. 13. The conductivity?Xy of random beds of ellipsoid®), cylinders(+), and parallelepipeds ) vs the porositye. The broken line
is (33). (@) and (@) are Kimet al.[33] data for beds of mica particles and of mylar disks, respectively.
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FIG. 15. Permeability as function of porosita) ny/Rf of
random beds of ellipsoid€D), cylinders(+), and parallelepipeds
(*) vs the porositye. The dot is the measurement of Thiess-Weesie
et al.[34]. The broken line is Eq(34¢ with k/#?=10; the dotted
line is the least square fit E¢41). (b) The permeabilit)ny/r? of
random beds of prolate particles witlll =5 (O) and 10(*) vs the
porosity e. The broken line is Eq(37) with k,=6.1 andks=0.64.

Zl=

107k 1 The dotted line is Eq(37) with k,=12.6 andks=0.707. The dashed
line is Eq.(38).
- ) The permeability of packed beds, or more generally of
0 . ) o .
10” 10° 10' 1,1, porous media, has been extensively studied in the literature,

although in a range of porosities lower than the present one.
Several empirical or semiempirical models have been pro-
posed to rationalize its dependence upon global parameters
such as porosity, the hydraulic radius, or the specific surface
area (cf., for example,[55] or [56]). The most classical
model is the Carman-Kozeny equatifv]

FIG. 14. The permeabilitieKXy/Rg (solid lines and K,/R?
(dotted line$ of beds of ellipsoidga), cylinders(b), and parallel-
epipeds(c) vs the aspect ratid,/l,. Data are for series (O), 2
(+), and 3(*). The dot(®) is the measurement of Thiess-Weesie
et al.[34].

em?

The vertical permeabilit), also behaves in a way simi- K= Kk (343
lar to the vertical conductivityr,. For prolate particles,,
andK, are roughly identical since the packed beds are isoyherek is the so-called Kozeny constart.is generally a
tropic. For oblate graing, is lower thank,,, especially for  fow units. For sphere packings, the valke5 is widely
flat ellipsoids, which yield the most ordered stratified struc-accepted. With the definition Eq&) and(34a can be recast

tures. into
The data in Fig. 14 foK,, are recast in Fig. 18) as
functions of the bed porosity. Again, it is remarkable that K &8
the simple normalization oK,, by the square equivalent —=—. (34b)
radiusR 2 gathers the results for the various shapes and elon- R, kS

gations around a single master curve. The mode of construc-

tion of the packings, with the weighting lenggin Eq. (2b), Since for well defined particle shapes the specific surface
does not seem to have any influence when beds with identarea is directly related to the porosity by E¢S) and(34b)

cal porosities are compared. for grain packings may be written as
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K_ 32 34
RZ ™ 9k(1—e)?" (349

v

Martys et al. [20] could accurately represent the results of

numerical calculations for nine different models of porous
media, including seven types of random sphere packings ilf

the range 0.8:€<0.8 by Eq.(349 with k=2. However, none
of these packings results from a grain deposition proces
with mechanical stability requirements. The looser ones ar

scaling law for the porosity-permeability relation, valid in a
very wide porosity range 0.82e<<1. However, this law as-

sumes the existence of a percolation threshold, which caj

exist only if the particles may overlap.

If the Carman-Kozeny model Eq340 applies to the
present packed beds, the unique master curve in Fi@) 15
suggests that the Kozeny constant for aspherical grains
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He could fit a variety of experimental data with=6.1 and
ks=0.64. This relation is compared to our results for slender
particles withL/I =5 and 10 in Fig. 16). The agreement is
not good if the previous constants are used, but is signifi-
cantly improved if one sets,=12.6 andks=0.707. The ma-

jor drawback of this model is that it predicts a percolation
threshold at¢=k2, which limits its validity to very high

porosities. Another empirical model due to Davig®] is
yery successful:

actually suspensions, and in most cases the grains are al-
lowed to overlap. These authors proposed also a universal

K/r?=[164%1+644%)] . (38)
Very good agreement is observed in Fig(l)Sor all prolate
ﬁ]rain packings withL/1=5, without adjusting the constants
Eq. (39).
Another type of porosity-permeability correlation is com-
monly used, which does not involve the hydraulic radius,

Ir;'amely, the power law

n

related to their asphericity inde¥. Namely, if kq corre- Kae

sponds to spherical particld®’=1), one should have for
other shapes

(39

Jacquin’d49] measurements on various Fontainebleau sand-
stones yieldedn~4.15 in a porosity range 0e<0.25.
Guillot [50] obtained the same value=4.16 for fused glass
beads with 0.Ze<0.44. Rumpf and Gumpte0] correlated

Equation(340) is plotted in Fig. 18a) with ko=10, to fitour 1\ ;merous permeability measurements for polydisperse
data for sphere packings. This value is much larger than thgphere packings by the power law

standardk,=>5, but recall that the actual surface area in the
discretized samples is not equal to the theoretical vébue

On one hand, the grain contacts are nonpointwise, which
lowers the specific area; on the other hand, the discretization

of the grain surfaces has the opposite effect. As a whole, the ~ . ) o
discrete estimate af overpredicts it by a factor of 1.2 to 1.4 WhereD is a surface-weighted average grain diameter. As

in almost all cases, except for very oblate particles where thi§h9""n, by Fig. 188), our data agree with Jacquir’49] and
factor is very scattered. Thus, the usekgf10 in Eq.(349  Guillot’s [50] results. A least square fit yields

actually corresponds th~6 in Eq. (34b) with the discrete
estimate ofS. As seen in Fig. 1&), the Carman-Kozeny
model applies fairly well to these random packings for po-

rosities up to 0.55. For looser beds, the model overestimates )
the permeability. Finally, it has often been attempted to relate the conduc-

The discrepancy at high porosities may result from thdivity and per_meability of porous media. The c_onductivity
heuristic argument underlying the Carman-Kozeny equatior@nd permeability measurements of Woetgal. [47] in fused

The pore space is viewed as a network of capillaries or plan@lass bead packings with 0.62<0.4 obey the scaling law
channels, and this becomes unrealistic for loose beds. In par-
! unreaiss b Kao?. (423

ticular, packings of very prolate particles are closer to fibrous

?jgﬁ’onwsr}gh t?\ivfe\?ig\?vnir:&;%]go .I(_):;ergﬁq‘aesag;iter?smgﬁleﬁorSchwartzet al. [61] obtained the same dependence from the
: ) P yisg results of numerical simulations on various types of random

packings whose porosity was varied from 0.1 to 0.55 by

ally normalized by an equivalent fiber radius:
varying the grain radii and allowing overlaps. Katz and

¢

k=W¥2k,. (39

K e.5.5

—=— 40
D? 5.6 (40

K
—=0.117%*5" (r=0.989.

- (41

v

12
rr=<—) , (369  Thompson[62] obtained quantitative predictions for rocks
il with the model
wherelL is the total fiber length per unit volume. With our K=cl?g. (42b)
notations, e
112 wherel, is a characteristic length for the restrictions in the
rF(E &) R . (36h) pore space controlling the flow, measured, for example, by
3L ’ mercury porosimetry. Even if the data in Fig.(&6corre-
) o sponding to the ordered packings of oblate ellipsoids are
For isotropic fibrous beds, Ch¢b8] proposed the model omitted, our results do not fall between E¢#24a and(42b).
A least squares fit yields
, m(1—¢) —1
Kirf=———In[ksep~2]. (37

Ky K=0.15&7% (r=0.984, (43)
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FIG. 16. Relation between permeability and conductivig). 1010—2 10° 102 10*

The permeabilit)KXy/R,f of beds of ellipsoidgO), cylinders(+), Pe
and parallelepipedér) vs the conductivityo,,. The dotted line is . o

Eq. (43). (b) The ratioK,/m?oy, for packings of ellipsoid4O), FIG. 17. The reduced axi®}/D (a) and transversaD* /D (b)
cylinders(+), and parallelepipeds) vs the aspect ratib/l,. Data  dispersion coefficients vs the &et number Pe. Numerical simula-
are for series 1 and @-) and series 3--). tions for spheregsolid line with =) and ellipsoids with ;/1,=0.5

(short dashed line with-), 2 (long dashed line with-), 0.2 (dashed
in a good agreement with the combination of E@8b) and  line with x), and 5(solid line with X). Experimental data for bead
(42). packings:[66] (@); in (a) [45] for sands(A), and bead packings
An interesting model was proposed by Berryman andO); in (b) [68] (A) and[67] (O) for bead packings.
Blair [63], following Walsh and Bracg64]. If the pore space
is viewed as a plane or circular channel, it may be shown thaheabilities obtained for beds with the same poro§Fig.
) 15(a)]. This illustrates again the fact that the deposited pack-

K= 10— (443 ing transport properties do not depend upon their mode of

b ™’ construction, provided that it does not induce any grain or-

dering, when beds with identical porosities and equivalent
whereb is 2 for tubes and 3 for cracks. For well defined particle sizeR, are compared.

grain shapes, Eq44a may be recast into

K ey D. Taylor dispersion
Eg: 9(1-¢)%b g (44D Since it is computationally much more demanding, dis-

persion has not been investigated as thoroughly as conduc-

The ratioKXy/mza_xy is plotted in Fig. 16b) as a function of ti\_/ity and permgability. Beds of ellipsoids were considered,

the aspect ratid,/I, for all the packed beds considered in With aspect ratiod,/I,=0.2, 0.5, 1, 2, and 5. The corre-

this paper withm evaluated on the discretized geometries.Sponding porosities were 0.401, 0.425, 0.409, 0.418, and

Except forl ,/1,=0.1, where the data are more scattered, it i<0-536. The sample size wag/L =20/3, except for spheres,

always found between 1/3 and 1/2, corresponding to the twi/ith w/L=15/2. As mentioned in Sec. IV A, the flow direc-

values ofb mentioned above. tion was set along the andy axes. The two axial and
Let us finally compare our results to the few data relativetransverse(in the horizontal planedispersivity coefficients

to aspherical grain packings in the literature. In their packedvere found identical within a few percents. Their averages

beds of prolate ellipsoids obtained by filtratidgeee Sec. are denoted;” andD7, respectively.

[l A), Thiess-Weesiet al.[34] measured(/R,f:7.7><10_3 The results are plotted in Fig. (&, versus the Rdet

for 1,/1,=2.37, e=0.54. Since their porosity is higher than number Pgsee also Table Il

ours for identical particle elongatiorisf. Fig. 5a)] this re- .

sult does not fall with our data in the plot &/R?2 versus v'R,

2 . ! P
[1/1, in Fig. 14. However, it agrees very well with the per- ™

: (45)
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TABLE Ill. Axial and transverse dispersion coefficients in beds of ellipsoids with various aspect ratios
I,/1, as functions of the Réet number Pe.

14/, w/L € Pe D} D*
0.20 6.67 0.401 0.020 0.498 0.498
0.20 0.506 0.502
2.00 1.09 0.718
20.0 14.8 3.05
200 395 19.6
0.50 6.67 0.425 0.020 0.546 0.546
0.200 0.550 0.550
2.00 0.831 0.664
20.0 9.54 2.12
200 205 123
1.00 7.50 0.409 0.100 0.490 0.494
1.00 0.588 0.534
10.0 3.91 1.36
100 85.5 6.51
1000 1250 33.9
2.00 6.67 0.418 0.020 0.455 0.457
0.20 0.460 0.457
2.00 0.796 0.589
20.0 9.74 2.08
200 194 10.4
5.00 6.67 0.536 0.020 0.411 0.412
0.20 0.422 0.415
2.00 1.08 0.588
20.0 18.4 2.27
200 443 13

whereD is the molecular diffusion coefficient and’ is the  sands and bead packings are very similar, and lie mostly
mean interstitial fluid velocityp* =v/e. The most striking between our curves fdc/I=1 or 2 andL/I=5. Gunn and
feature is that, when cast against theleenumber based on Pryce[67] data are lower than our data for spheres by a
the equivalent radiuR, (45), the dispersion coefficients de- factor less than 2.
pend very little upon the particle shape, except in the diffu- Experimental data for transverse dispersion are fewer, but
sive regime P«1 whereD; andD? reduce tog_xy/f_ The  since they are more recent and have the benefit of improved
axial coefficients for spheres and oblate or prolate ellipsoidgneasurement techniques, they are considered as valid and
with L/l =2 are indistinguishable in the log-log plot of Fig. accurate as those obtained for longitudinal disper$6.
17(a). The values oD} for very aspherical prolate and ob- The data in Fig. 1(b) were obtained by Harleman and
late grains withL/I=5 are almost identical, but the former RUmMer[68], Gunn and Prycg67] and Hanet al. [69] in
differ by about a factor 2. The data for the transverse coefSPNe€re packings with porosities 0.36, 0.37, and 0.39-0.41,
ficients in Fig. 1Tb) are even closer together. Only the very "€SPectively. The agreement with our data for spheres is
oblate ellipsoids with,/I,=0.2 yield coefficients about 50% adain very good. _ _ .
larger than the others. Note that the bed of slender ellipsoids 't IS common practice to relate the dispersion coefficient
with 1,/1,=5, which has a much larger porosit9.536 ver- © the Pelet number by a power law:
sus 0.4—0.425 does not show any peculiar behavior. D* o P (46)

We are not aware of any systematic experimental study of :

dispersion in beds of very aspherical particles. HoweverFrom the data in Fig. 1@, the exponenn for the axial
measurements of axial dispersion in beds of spheres or of — ' '

moderately irregular grains such as sands have given rise fcpefflmentD” , measured around P00, is equal to 1.27
numerous publications in the late 1950s. These were colO" SPheres and moderately aspherical grains and to 1.40 for
lected by Pfannkuchi46]. This collection was reproduced Very aspherical ones. A lower exponent is obtainedXbrin

with little additions in later review$65,55,25,66 Pfann-  Fig. 17b); nis equal to 0.71 for spheres and moderate aspect
kuch also performed measurements on sands and bead pa&Rtios and to 0.78 for very aspherical particles. A least square
ings. Since they agree with the previous results, they aréit of all the data for Pe-10 yields

reproduced with the later results of Gunn and Piy&d and
compared with our calculations in Fig. &. From the pho-
tographs in Pfannkucf46], the typical aspect ratio of his . -
sand grains may be roughly estimated_&s=2. His data for DY/D=0.27P&", r=0.98, Pe=10. (47)

D/D=0.26P&% r=0.98, Pe=10,
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The exponents in Eq47) are consistent with the experimen- sponds to specific operating conditions, has some impact on
tal determinations for various unconsolidated media. Fothe bed structure.

axial dispersion the most common value is [[7D,65. For Perhaps the most striking result in this paper is the fact

transverse dispersion, the exponent ranges from [@8]7to  that the effective transport properties of the packed beds are
1.1[65]. The ratio ofDj andD? is very close to the experi- totally oblivious to these circumstances. Except for oblate

mental observation of Harleman and Rurm@8: ellipsoids, which yield highly ordered structures, all the beds

— = » with identical porosities share almost identical conductivi-
Dj /D7 =Pé (48 ties, permeabilities, and dispersion coefficients, regardless of
grain shape or construction mode. This suggests the exist-

V. CONCLUSION ence of a very general class of “random unconsolidated

While the geometric properties of arain packinas ObVi_granular media,” whose transport coefficients depend only
9 prop ) P 9 pipon porosity and an equivalent grain sRRg. This would

ously depend on the geometry of the constituting grains, i . . .
has )(/)fter? been pointegd out th};\t they depend algogupon theé<pla|n the good agreement that is always obtained between
umerical simulations and experimental observations for all

mode of construction. For example, the random sequentie{L i . .
deposition algorithms in this work or in previous contribu- the transport processes. This would also explain the variety

tions yield much smaller porosities for identical particles©f Situations where simple models like Archie’s law or the
than the Monte Carlo simulations of Buchalter and BradleyCarman-Kozeny equation can be successfully applied. Our
[14]. The experimental observations are also scattered, due §@Mputations can be summarized by E(33), (41), and
different packing procedures. Even within the framework of(47), which are verified with a correlation coefficientarger

the present algorithm, the weighting lendg® which corre-  than 0.975.
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