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Geometrical and transport properties of random packings of spheres and aspherical particles

D. Coelho,1 J.-F. Thovert,1 and P. M. Adler2
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Random packings of grains of arbitrary shape are built with an algorithm that is mostly applied to spheres,
ellipsoids, cylinders, and parallelepipeds. A systematic account of the main geometrical properties such as the
porosity, the reduced specific area, etc. is given. The conductivity, the permeability, and the dispersion are also
systematically determined and they are shown not to depend upon their mode of construction.
@S1063-651X~97!13802-8#

PACS number~s!: 46.10.1z, 47.11.1j, 81.05.Rm, 47.55.Mh
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I. INTRODUCTION

Grain packings have attracted considerable interest f
long time as a model for various types of porous media, s
as geological materials like soils, etc. Of course, regu
packings have been extensively studied, since their sim
geometries make an analytical or semianalytical determ
tion of their properties achievable. However, they do n
account for the random character of most natural me
Therefore, we shall not dwell on these models, and fo
rather on three-dimensional random packings.

A general numerical algorithm was devised to simul
the random sequential deposition of nonoverlapping gra
with arbitrary shapes. The model is three dimensional
accounts for translations and rotations of the particle dur
their settling. To the best of our knowledge, these featu
were never found simultaneously in previous simulatio
The algorithm was applied to various particle shapes
aspect ratios. The main geometrical and transport prope
of the resulting packed beds were systematically determin
Comparisons with prior numerical or experimental data
made whenever possible.

Most of the enormous literature on random packings
cumulated during the last decades can be found in re
surveys@1–5#. Brief specific surveys are made in some se
tions of this paper.

This paper is organized as follows. Section II is devo
to the construction of random packings. Earlier algorithm
which mostly addressed spherical grains, are briefly s
veyed. Then, the sequential deposition algorithm is detai
The search for the rest position of a particle that settles un
gravity combines steepest descent and conjugate gra
methods. A weighting coefficient is introduced to fav
translational or rotational degrees of freedom.

The geometric properties of the random packings are
dressed in Section III. After a short review of the vario
conceptual and experimental characterization tools, bed
spheres, ellipsoids, cylinders, and parallelepipeds with v
ous aspect ratios are considered and many novel result
given for porosity, specific surface area, orientational ord
ing, and correlation function. Larger porosities are obtain
when either rotation or translation of the settling particles
strongly favored; in between, all the properties are wea
sensitive to the weighting between the translational and
551063-651X/97/55~2!/1959~20!/$10.00
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tational degrees of freedom. Whatever the particle sha
minimal porosities are obtained for unit aspect ratios. Obl
ellipsoids are a special case, where a strong ordering in h
zontal layers develops. For sphere packings, our results a
with previous data for random loose packings.

Section IV is devoted to the transport properties of t
random packings. Conduction, convection, and Taylor d
persion are successively considered. The governing e
tions and methods of solution are recalled first from ear
works. A unique power law relates the conductivities of
the packed beds to their porosities, regardless of the par
shape, in agreement with the classical Archie’s law. Perm
abilities are likewise related to porosity only. The data a
successfully compared to various models, and a relation
between the Kozeny constant and the grain asphericity in
is proposed. Finally, the longitudinal and transverse disp
sion coefficients in beds of ellipsoids depend very wea
upon the particle aspect ratio. The numerical results are
very good agreement with numerous experimental data
various granular media.

Some concluding remarks end this paper. Although
geometrical properties of randomly deposited packings
pend upon the shape of the constituting grains, their trans
properties do not depend upon their mode of construct
when beds with identical porosities and equivalent parti
sizes are compared.

II. CONSTRUCTION OF RANDOM PACKINGS

A. Literature survey

The packings investigated in this paper result from
random sequential deposition of nonoverlapping grains a
the pioneering work of Vold@6#. In such a ballistic deposi-
tion, the grain trajectories toward their final position are bu
explicitly, which ensures that a particle can actually reach
position during the genesis of the packing. Similar alg
rithms were used by many authors such as Visscher and
sterli @7# who included a periodicity condition along the hor
zontal directions, in order to reduce the lateral wall effe
~cf. @2# and references therein for a study of these wall
fects!. These authors generalized also the method to bi
perse sphere packings. Today, such simulations can be
for samples of several millions of spheres@8#.

All the aforementioned studies share a few common f
tures. They operate in a continuous space, a feature tha
proves precision. The particles are dropped one at a ti
1959 © 1997 The American Physical Society
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The grain interactions~i.e., the nonoverlap condition! are
handled analytically; this speeds up the simulations, but l
its the applicability to very simple~monodisperse or bidis
perse! collections of spheres. The particle does not mo
anymore after settling. Therefore, the interactions betw
the particles are limited to the exclusion condition betwe
the currently settling grain and the static configuration of
current bed.

These numerical works have their experimental coun
parts. For instance, Bacriet al. @9# deposited glass beads
water. Onada and Liniger@10# also deposited glass beads
a viscous fluid, under microgravity conditions by matchi
the densities of the fluid and solid phases.

Rosatoet al. @11,12# and Buchalter and Bradley@13,14#
tried to take into account the interactions between the sett
particles, which may become significant at higher deposit
rates, for example, during the settling of concentrated s
pensions.

Few attempts have been made to account for the co
tive rearrangement of grains within the bed by application
Newton’s laws of motion. Yen and Chaki@15# accounted for
interparticle forces but not for hydrodynamic forces. Ho
ever, various procedures have been devised to simulate
dering due to shaking or vibrating@5#. A first family of meth-
ods increases the packing fraction, by biasing the balli
deposition procedure@16,7#. Other authors allow rearrange
ments once a sequentially deposited packing has been
@17,13#.

For the sake of completeness, let us mention briefly a
totally different non-ballistic models that were devised
Jodrey and Tory@18#, Larson and Higdon@19#, and Martys
et al. @20#. Other authors~e.g., Torquato and Stell@21#! study
the properties of random packings whose morphology res
from thermodynamical equilibrium hypotheses, witho
building them. Finally, purely geometric construction proc
dures have been devised, such as tetrahedral tiling
Voronoi cells, in order to maximize the packing fractio
~see, for example, Dodds@22#!.

Packings of nonspherical particles have not been c
puted often in the past and they were only addressed in s
recent works by Buchalter and Bradley@13,14# for ellipses
and ellipsoids in two and three dimensions.

B. Sequential deposition algorithm

Our random packings result from the successive dep
tion of grains in a ‘‘gravitational’’ field. The grains are in
troduced at a random location above the bed already in pl
and fall until they reach a local minimum of their potenti
energy. Sometimes, a dynamic language is used, but
reader should not be misled, since the Newton’s laws
motion are never solved. During their fall, any displacem
and rotation that contribute to lower their barycenter are
lowed.

As a general rule, a mobile particle is allowed to s
freely on the bed surface as long as the elevation of
barycenter can be diminished. Moreover, each elemen
displacement of a grain is independent of its previous p
tion and orientation increments. However, as described
low, an adjustable parameter favors either translation or
tation of the particle, when both motions could lower
-

e
n
n
e

r-

g
n
s-

c-
f

-
or-

ic

ilt

w

lts
t
-
or

-
e

i-

e,

he
f
t
l-

e
ry
i-
e-
o-

elevation. Finally, the interactions are reduced to steric
clusion. A variant of this rule has been devised to simul
short-range attractive forces, which could create perman
links between grains. After contact, a settling grain can
allowed to rotate around the contact point without slip~but
the contact may move if the grain rolls on the bed!. For
instance, for parallelepipedic grains, if a vertex comes
contact with an underlying plane solid surface, the parti
would rotate until one of its edges and eventually one of
faces becomes tangent to this surface.

An interesting feature of our algorithm is that each p
ticle may have any size and shape, provided that it can
described in a spherical polar coordinates system~r ,u,w! at-
tached to it by a single valued functionr~u,w!. The inner
volume of the particle is defined by

r<r~u,w!. ~1!

Obviously, any convex particle shape can be described
Eq. ~1!. In this paper, only orthotropic particle shapes ha
been considered~ellipsoids, circular cylinders, parallelep
peds!. Of course, the particle referential is aligned with
principal axes.

The position of a particle is represented by the locat
r5t(x,y,z) of its barycenter, and by a setv of three angles
that give the orientation of the particle referential, with r
spect to the coordinate system; the superscript ‘ ‘t ’ ’ denotes
the transportation operator. Thez axis is oriented upwards
The grains are deposited in a square vertical box, with a
bottom at z50, and periodicity conditions along thex

FIG. 1. Schematic diagram of the unit cell with periodic boun
ary conditions; illustration of some geometrical notations.
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55 1961GEOMETRICAL AND TRANSPORT PROPERTIES OF . . .
andy directions, in order to avoid the well-known hard-wa
effects~Fig. 1!.

The trajectory of a grain during its settling is built b
small elementary steps. Suppose that its current position
orientation arer andv. Let x5t(x,y) be its horizontal posi-
tion. The first step is to determine the number and the p
tions of the contact points with the bed, below the grain. T
is done by scanning the surfaces of the grain and of
neighbor particles that belong to the bed. Two or more
multaneous contact points are a statistically unlikely eve
except in the very late stages of the settling, which are s
cifically addressed, as described below. The most comm
case is a single contact point, and one has to determine
combined horizontal translationdx and rotationdv, which
allow the steepest descentdz of the particle barycenter. For
mally, we consider the function giving the~locally! lowest
elevation and orientationz~x,v!, and evaluate its gradien
“z . This is done analytically, since the normal and tangen
vectors to the contacting surfaces can be derived from
definitions~1! of the particle shape. Note that this quantity
purely local and that it takes into account the detected c
tacts, but not the possible presence of the other close s
walls. Moreover, it ignores the curvatures of the grain and
the bed surfaces.

The direction that yields the steepest descent is the co
~dx,dv!, which maximizes the absolute value

dz5u“xz•dx1“vz•dvu. ~2a!

At this stage, the amplitude of the displacement is unkno
and it is arbitrarily set to 1; hence,

dx21R̂2dv251. ~2b!

Note that the angular incrementdv is weighted by a length
R̂, which is kept constant for a given particle, and is gen
ally equal to the radius of the sphere with the same volu
Note, however, thatR̂ can be chosen to tune the preferent
motions of a particle. Small values ofR̂ favor translationdx
in Eq. ~2a! since the particle will lower its position mostly b
translations. The reverse holds for large values ofR̂.

Once the direction~dx,dv! of the displacement has bee
deduced from Eq.~2!, it is applied to the particle with an
amplitudeA, small with respect to the particle size~say
A<R̂/5!. The actual lowest possible positionz8 of the grain
at ~x1Adx,v1Adv! is evaluated. Note that this is don
by using the same algorithm as for the detection of the c
tact points, which scans the surfaces of the grain and
the neighbor particles that belong to the bed. Finally,
steric condition is satisfied within a tolerance~e.g., <R̂/
1000!.

This steepest descent method is recursively applied
long as a significant downward progress is possible. Ho
ever, it happens very often that the settling grain enter
‘‘valley’’ between two opposite solid surfaces. The ma
slopes of these surfaces can be directed in almost opp
directions, and the grain starts bouncing from one side
another, with little vertical progress because the search a
rithm is unable to find the major downstream direction of t
valley. If at some stage, two contacts are simultaneou
found on two opposite faces within a toleranceDr , a new
direction of progression can be enforced. The two tangen
nd
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planes to the contact points form a dihedron, and the opti
zation in Eq.~2a! is performed by imposing additional con
straints to Eq.~2b!, thereby reducing the degrees of freedo
The grain is forced to move along the longitudinal axis of t
valley, and as a result, it escapes faster from the trap.

Very often, double contacts cannot be detected bef
progression becomes exceedingly slow. When this happ
the steepest descent method is replaced by a conjugate
dient algorithm. In this latter algorithm, all the directions
displacement are conjugated~essentially normal! with the
directions of the previous steps. This is less efficient than
steepest descent algorithm when the grain slides freely a
a long inclined regular surface and for this reason the latte
generally preferred; but in the kind of traps mention
above, the right direction is almost immediately found. Ho
ever, when the grain goes back to a larger region, the co
gate gradient algorithm becomes again less efficient than
steepest descent method and it is replaced by it.

Let us mention the specific treatment of triple contac
This situation is very uncommon if the grain has not reach
its final rest position. Then, the analytical evaluation of“vz
becomes untractable because of the very complex limitat
of the rotational degrees of freedom. The optimization~2a! is
restricted only to translational displacements~dv50!.

The settling of the grain ends up when its barycenter c
not be lowered by more than a quantityDr neither by the
steepest descent, nor by the conjugate gradient method
this final situation, it rests on three simultaneous conta
with a probability of about 0.8 for ellipsoids, and of abo
0.5 for sharp edged particles such as cylinders or parallel
peds.

Various complications may occur, that are fully describ
by Coelho@23#. For the sake of clarity, the overall depositio
algorithm is sketched in Fig. 2.

C. Parameters of the numerical simulations

1. Definition of the grains

Only packings of identical particles with three symmet
planes are investigated in this paper. Ellipsoidal, cylindric
and parallelepipedic grains were considered. They are
fined by their semiaxes (l 1 ,l 2 ,l 35 l 2), two of them being
equal. For convenience, the semiminor and semimajor a
are also defined by

l5min~ l 1 ,l 2!, L5max~ l 1 ,l 2!. ~3!

Oblate ~prolate! particles correspond tol 15 l ( l 15L). The
particle orientation is characterized by the axial unit vecton̂
along l 1, which is oriented upwards~Fig. 1!.

The following quantities are introduced for later use. T
equivalent radiusRv is the radius of the sphere with the sam
volume. For example, for an ellipsoidal particl
Rv5 l 1

1/3l 2
2/3. Sv is the surface area of the sphere of rad

Rv . Finally, the sphericity indexC is equal toSv/S, whereS
is the grain surface area.

2. Overall dimensions of the samples

The packings are built by sequentially depositing a to
number ofNu particles in a ‘‘box’’ with a squarew3w
horizontal cross section~Fig. 1! and a flat hard bottom. In



p
n
u

e

o

t
h

i

a

a

but
are

ro-
tical
er

nal
ch
to

er-

ns
of

ith

e of
in
th
ith
ll-
ss
d in
ar-
ce it
ver

e
for
rain
par-

n-
rs
ins
lho
es,

ons

ma-

om-
20
n-
s to
er

ari-
d in
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order to minimize size effects, periodicity conditions are a
plied along the two horizontal directions and all subseque
measurements and calculations are performed in a cubic s
sample of volumew3, which starts at a heighth0 over the
bottom of the packing.

The sample sizew was always taken much larger than th
particle major axis, with 5<w/L<20, except for very elon-
gated shapes withL/ l510 where 3<w/L<5. The rejected
layer thicknessh0 is always at least equal tow/2. Porosity
measurements within layers at increasing elevations sh
that the disturbances induced by the flat bottom do not e
tend beyond this range.

3. Parameters of the search algorithm

Four parameters have been introduced in the sequen
deposition algorithm described above. One of them, t
weighting lengthR̂ in Eq. ~2a! has been varied from half the
minor axis up to twice the major axis of the particles, and
does influence the resulting packings, as discussed in S
IV. Since the characteristics of the packings were foun
weakly sensitive toR̂ if L/2<R̂<L ~and the minimal poros-
ity is obtained in this range!, most simulations were per-
formed in this condition. However, it should be emphasize
that in Sec. IV, the transport properties of the packings c
be related to their geometrical characteristics regardless
this construction parameter.

The three other parameters involved in the deposition
gorithm, namelyA, Dr , andDv, control the step sizes and

FIG. 2. Sketch of the overall deposition algorithm.
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the accuracy of the search for the equilibrium positions,
they do not influence the final result, provided that they
small enough.

4. Statistical fluctuations and sensitivity
to the numerical parameters

Since the building of the packed beds is a stochastic p
cess, their properties are expected to show some statis
fluctuations. It is useful to quantify this dispersion, in ord
to set the values ofA, Dr , andDv accordingly. Since very
fine requirements are very costly in terms of computatio
time, it is pointless to try to achieve an accuracy mu
smaller than the statistical fluctuations. It may be useful
anticipate on the discussion of Sec. III.

Systematic studies on the statistical fluctuations were p
formed. For instance, the standard deviationse of the poros-
ity for beds of spheres of radiusR is 0.0048 whenw510R
while the average porosity is 0.4121. Larger fluctuatio
were expected for aspherical particles. The porosities
three realizations of packings of oblate ellipsoids w
l 1/ l 255, w/L57.02, A5Rv/5, Dz5Rv/50, andDv50.87°
ranged between 0.414 and 0.449. This order of magnitud
the fluctuations is valid for all the simulations reported
this paper, except for very flat oblate ellipsoids wi
l 1/ l 250.1. In the latter case, the grains tend to settle w
their largest section horizontal. This would yield a we
organized bed with a porosity comparable to that for le
aspherical grains. However, a few grains may get clampe
inclined positions, with their edge stuck between two p
ticles. This rare event has dramatic consequences, sin
disturbs the arrangement of the surrounding particles o
distances of orderL. This is illustrated in Fig. 3, for ellip-
soids with l 1/ l 250.1, andw/L57.43. These two beds hav
porosities 0.395 and 0.569. Such effects are less critical
prolate particles, since the disturbances induced by one g
are weaker, and are smoothened for moderately oblate
ticles, because larger ratiosw/L could be used.

In view of these statistical fluctuations, the porosity ca
not be used to test the influence of the search parameteA,
Dr , andDv. Instead, the overlap between the solid gra
was considered. The complete study is reported by Coe
@23#; it may be summarized by saying that in the worst cas
the average overlap thickness is smaller thanRv/100.

5. Computations

For each particle shape, three main series of simulati
were run, which cover the whole range of aspect ratiosl 1/ l 2 ;
for the sake of completeness, their parameters are sum
rized in Table I.

Except in the special case of spheres, the numerical c
putations for the deposition of a single grain require about
s on an IBM RS6000-560 workstation. The total time co
sumed to build the samples used in this study amount
about 500 h, including the burden to build the rejected low
layer, and the upper layer of comparable height.

III. GEOMETRIC PROPERTIES OF RANDOM PACKINGS

A. Geometrical description of random packings

The purpose of this subsection is to summarize the v
ous characteristic geometrical parameters that are define
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55 1963GEOMETRICAL AND TRANSPORT PROPERTIES OF . . .
@24,25,3#. In addition to the determination of the constitutin
grains, which is of no interest for numerical packings, t
quantities to be characterized fall into several categor
namely the global parameters, the pore space morphol
and ordering. The global parameters include the porositye or
the solid fractionf512e, and the specific surface areaS. A
variety of mathematical tools has been introduced to cha
terize the morphology of the pore space, such as var
types of one- or two-dimensional size distributions, me
free path, etc.@24,3#. Finally, various parameters have be
defined to describe the short or long range ordering of
grains within the bed, such as the coordination numbeZ
~average number of contacting grains!, the radial distribution
functiong, and the orientational or positional ordering ind
ces.

FIG. 3. Two packings of oblate ellipsoids withl 1/ l 250.1. The
porosity is 0.395~a! and 0.569~b!. The overlap of two grains is
indicated by the arrow in~b!.
s,
y,

c-
us
n

e

Access to these parameters is more or less easy depen
on whether one deals with a real or a synthetic sam
Among commonly used experimental methods, one can
image analysis, gas sorption, nuclear magnetic resonance@3#,
mercury intrusion porosimetry@25#, and finally, diffraction
patterns from small angle scattering~SAS! @3#.

The situation seems easier when the packed bed is
scribed numerically, for example, by all the grain positio
and orientations. Volume fractions, specific surface area,
dial distribution functions, and orientational correlations a
indeed readily available. Diffraction patterns equivalent
SAS measurements can also be obtained by Fourier tr
form @13,14#. However, some quantities are still tricky t
determine. The coordination numberZ, which is mostly used
in theoretical approaches@26#, can easily be underestimate
by failing to detect contacts. The determination of the co
nectivity and pore size distribution of the pore space is als
difficult task as can be seen in@27–30#.

In this paper, in addition to porosity and specific surfa
area, ordering parameters are investigated, such as the r
distribution function, the positional ordering via the tw
point phase correlation function, and the orientational ord
ing via angular correlations.

B. Porosity

The simplest characteristic quantity of the packing geo
etry is its porosity, or void volume fractione. The influence
of the construction parameterR̂ was investigated first. Pack
ings of aspherical ellipsoids~with l 1/ l 251/5, 1/A10 and
A10!, cylinders ~with l 1/ l 255!, and parallelepipeds~with
l 1 / l 251/A10 andA10! were built with various weighting
lengthsR̂; the other parameters are identical to the ones u
in series 3 in Table I. The resulting porosities are plotted
Fig. 4~a! against the ratioR̂/L. Larger porosities are obtaine
for small and large values of this ratio. This can be explain
by the fact that for very small~large! R̂, the deposition algo-
rithm first tries to lower the grain elevation by shifting i
horizontal position~by rotating it! without rotation~horizon-
tal shift!, whereas for moderateR̂ all the grain degrees o
freedom are simultaneously considered. It is remarkable
for all particle shapes and types~prolate or oblate!, the mini-
mal porosity is always obtained forR̂ ranging fromL/2 toL.
Therefore, it is expected that the packing properties
weakly sensitive toR̂, if it is set in this range.

Consider now the complete data in Fig. 5. The porosit
of all the packed bed samples are plotted against the r
l 1/ l 2 . According to Fig. 4 and the range ofR̂ in Table I,
porosities of series 2 are expected to be larger than for se

TABLE I. Search algorithm parameters and typical sample c
tents~number of particlesNu!.

Series
1 2 3 Tests

R̂ ~0.2–0.5! L ~0.1–0.3! L ~0.5–1! L ~0.5–1! L
A Rv/5 Rv/5 Rv/5 Rv/20
Dr 1/100 1/100 Rv/50 Rv/200
Dv 1/2° 1/2° 5/6° 1/2°
Nu 50–500 150–300 300–600 300–600



is
Fo
if

3

fe
ni
wi
t
ra
os
g
ob

s

-

-
al
x-
ari-
om

e-
d

1964 55D. COELHO, J.-F. THOVERT, AND P. M. ADLER
1, which are themselves larger than those of series 3. Th
actually observed only for the most extreme size ratios.
L/1<5, the statistical fluctuations and maybe the slight d
ferences in the search parametersA, Dr , andDv prevent an
obvious display of this ordering. As a matter of fact, series
with a largerR̂ but looser parameters~Dr ,Dv!, often yields
the largest porosities for sharp-edged particles.

The curves for the various particle shapes share a
common features. They all show a minimum for the u
aspect ratio. For prolate grains, the porosity increases
l 1/ l 2 . For very elongated particles, all the curves seem
converge toward a common value. This is because the g
packings become bundles of needlelike particles, wh
cross sections have little influence on their relative arran
ment. However, for oblate grains, different behaviors are
served for ellipsoids and sharp-edge particles~cylinders or
parallelepipeds!. The porosity of cylinders and parallepiped

FIG. 4. The porositye ~a!, angular correlationsQ ~b!, andM ~c!
vs the ratioR̂/L for beds of oblate~—! or prolate~---! particles.
Data are for ellipsoids withL/ l55 ~s! or A10 ~d!, cylinders with
L/ l55 ~1! and parallelepipeds withL/ l5A10 ~* !.
is
r
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w
t
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packings increases withl 1/ l 2 , whereas it remains almost
constant for ellipsoids. This will be discussed below in rela
tion with the orientational ordering within the bed.

Finally, let us compare these data with the available nu
merical and experimental results of the literature. It is natur
to start with random packings of monodisperse spheres. E
perimental data are somewhat scattered because of the v
ous packing construction processes and porosity ranges fr
0.336 up to 0.445@31,9,10,32,1#. The porosity of real pack-
ings decreases with the apparent gravity, and with subs
quent shaking or vibrating procedures. It is generally agree
that 0.364460.0004 is the lowest porosity achievable with-
out any significant increase of short-range order@1#. Our

FIG. 5. The porositye of packings of ellipsoids~a!, cylinders
~b!, and parallelepipeds~c! vs the aspect ratiol 1/ l 2 . The numerical
data~solid lines! are for series 1~s!, 2 ~1!, and 3~* !. The broken
line in ~a! corresponds to the data of@14# and the dotted line to
those of@34#. The crosses in~b! and~c! are data from@2#. In ~b!, the
data of@33# for mica particles are denoted byd and those for mylar
disks by%.
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FIG. 6. The porositye of packed beds vs the aspect ratiol 1/ l 2 . The numerical data~solid lines! are for ellipsoids~s!, cylinders~1!, and
parallelepipeds~* !. The broken line is model~4! and the dotted line is model~5!. The large symbols are the data of@34# for ellipsoids~s!
and of @2# for cylinders~1! and for parallelepipeds~* !.
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simulations, which yielde50.402, are in the middle of the
range 0.4060.02 quoted by Berryman@1# for the so-called
random loose packings; they also agree with the recent s
lations of Jullien and Meakin@8# and Barker@5#, who ob-
tainede50.4185.

Numerical and experimental data for aspherical gr
packings are much scarcer and our results can be consid
as the first systematic study of such particles. A short lis
porosities for cylinder and parallelepiped packings is quo
from various sources by German~@2#, Table 5.1!. They are
compared with our results in Fig. 5. Although they sho
comparable variations with the aspect ratiol 1/ l 2 , they are
significantly lower than the numerical data~by about 0.10 for
cylinders and 0.20 for parallelepipeds!. The data of Kim
et al. @33# for beds of mica particles are consistent with o
results as shown in Fig. 5~b!, while the values for mylar
disks are somewhat lower. Submicronic silica-hematite p
late ellipsoids were prepared and packed by a filtration p
cess by Thies-Weesieet al. @34#. The porosity was measure
during permeation, since the packed beds expand in the
state due to surface charge repulsive forces. Their data,
ted in Fig. 5~a!, are somewhat larger than ours, perhaps
cause of these repulsive forces, and because the beds a
formed by a sequential sedimentation process, but rather
fast convection driven compaction. For this latter reas
these packings could be better described by the nume
simulations of Buchalter and Bradley@14#, whose model ac-
counts for the particle interactions during the packing c
struction.

Finally, let us mention two purely empirical correlation
used to predict the void fraction in random packings of
pherical grains which relate the sphericity indexC to the
solid fractionf:
u-
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C50.07910.831f11.53f3, ~4!

f5
q

~36p!1/3
C. ~5!

These models due to Warren and German@35# and Thies-
Weesieet al. @34#, respectively, are compared in Fig. 6 wit
our data of series 3 and the various experimental data m
tioned above. The constantq was set equal to 2.9 in order t
match our results for spheres~C51!. Model ~4! describes
fairly well the experimental data for cylindrical grains pac
ings, and model~5! agrees with our data for prolate ellipso
packings, but these correlations based on the sphericity in
are clearly not universal.

C. Specific surface area

The second quantity that is widely used to character
porous media, and thus grain packings, is the specific sur
areaS, defined as the total solid surface area per unit v
ume, multiplied by the length scaleRv . For packings of
identical grainsS is given by

S5
3f

C
. ~6!

The hydraulic radiusm is defined as the ratio of the tota
pore volume to its surface area. For packings of identi
particles, one has

m

Rv
5

e

S5
eC

3f
. ~7!
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The specific surface areaS is plotted in Fig. 7~a! as a
function of the aspect ratiol 1/ l 2 for the various particle
shapes. Only data for series 3 are displayed since ident
trends are observed with series 1 and 2. All the prolate p
ticles follow the same behavior, with a slight decrease ofS
as the particles become more slender. For oblate cylind
and parallelepipeds,S increases slightly when the grains be
come thinner. However, a different trend is observed for o
late ellipsoids with a sharp increase of the surface area. T
results from the smooth ordering of the particles. As alrea
pointed out, the porosity remains roughly constant whatev
the aspect ratiol 1/ l 2 , whereas the asphericity indexC drops
for oblate spheroids. Hence, their ratioS in Eq. ~6! increases.

The hydraulic radiusm is plotted in Fig. 7~b! as a func-
tion of the aspect ratio for the same configurations asS
above. As a general rule, for a given value ofl 1/ l 2 , the
ellipsoidal and parallelepipedic grains yield the smaller a
larger ratiosm/Rv , respectively. The hydraulic radius in-
creases when the particles become more aspherical, ex
again for oblate ellipsoids. In this case; bothe andf in Eq.
~7! remain roughly constant, whileC drops down to 0.418
for l 1/ l 250.1.

D. Orientational grain ordering

The orientational grain ordering is characterized by tw
parametersQ andM . The first one correlates the particle
orientations with the vertical axis

Q5H 3
4 $^cos@2 cos21~ n̂•ĝ!#&1 1

3 % ~ l 1, l 2!

2 3
2 $^cos@2 cos21~ n̂•ĝ!#&1 1

3 % ~ l 1. l 2!
, ~8!

FIG. 7. The reduced specific areaS ~a! and hydraulic radius
m/Rv ~b! vs the aspect ratiol 1/ l 2 for packed beds of ellipsoids~s!,
cylinders~1!, and parallelepipeds~* !.
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where ĝ is the unit vertical vector and the angular bracke
denote the average over all the particles. The constants
set so thatQ50 if the axial vectorn̂ ~see Sec. II C 1! is
uniformly distributed over the unit sphere, andQ51 if all the
particles lay flat~i.e., with n̂ parallel toĝ for oblate particles
andn̂ perpendicular toĝ for prolate ones!. The second one is
a pair correlation of the particle orientations

M5 3
4 $Š^cos@2 cos21~ n̂i•n̂j !#&‹1

1
3 %, ~9!

where the double brackets denote the average over all
ticle pairs. Again,M50 if the axial vectors are uncorrelated
andM51 if all the particles are aligned.

The influence of the construction parameterR̂ upon Q
andM was also studied and the results are plotted in F
4~b! and 4~c!. Both parametersQ andM are consistently
found maximal forR̂ equal to the particle semimajor axisL,
even in cases where only weak angular correlations are
served. Underweighting or overweighting of the grain ro
tions during their fall both tends to lessen the global order
within the bed.

The complete data forQ andM are plotted versus the
aspect ratiol 1/ l 2 in Figs. 8 and 9, respectively. Oblate an
prolate particles clearly exhibit very different behaviors. T
angular correlationQ is almost unity for very flat ellipsoids
This explains why the porosity of oblate ellipsoids is almo
insensitive to the aspect ratio. If the grains lie almost flat,
bed is actually equivalent to a bed of spheres, dilated al
the horizontal directions by a ratioL/ l , which does not affect
its void fraction.

Due to their sharp edges, flat cylinders and parallele
peds are not deposited as smoothly as flat ellipsoids. H
ever, significant correlations are still observed, withQ;0.6
and 0.5 for cylinders and parallelepipeds atl 1/ l 250.1, re-
spectively. The singular nature of line and point contacts a
induces stronger fluctuations and a stronger sensitivity to
simulation parameters. For identical aspect ratios, the hig
Q is always associated with the loweste.

For oblate particles, the pair angular correlationM be-
haves very much likeQ, though it is slightly smaller. This
means that the particle axes are evenly distributed around
vertical direction.

For a unit aspect ratio, bothQ andM almost vanish, as
could be expected. Note that these parameters are unde
for spheres.

The observations for prolate particles are totally differe
Though it seems thatQ decreases withl 1/ l 2 for ellipsoids,
no clear trend can be pointed out for cylinders or parallele
peds.Q undergoes very large statistical fluctuations and
very sensitive to the search parameters, with the hierar
between series 1, 2, and 3 expected from Fig. 4~b! and Table
I. Unlike for oblate particles, large differences inQ have no
significant influence on porosity, as shown in Fig. 8. Ho
ever, the pair correlationM is always very close to zero
because of the absence of interparticle arrangements.

The numerical simulations of Buchalter and Bradley@14#
for three-dimensional random packings ellipsoids are plot
in Fig. 8. For prolate particles, they are found between se
1 and 2, where the angular displacements are slig
weighted in Eq.~2a!. For oblate particles, they fall way be
low all our simulations. This probably occurs because
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their Monte Carlo simulations, all the grains simultaneous
settle in a concentrated suspension; thus, their rotational
grees of freedom are hindered, especially for oblate particl
It may also result from too large angular steps in the rando
displacements. This step is not reported in Buchalter a
Bradley @14#, but was taken equal to 6° in a former simila
work for two-dimensional ellipsoidal grains@13#.

E. Phase correlation function

Let Z denote the phase function describing the void-sol
distribution within the bed:

Z~r !5 H1 if rPvoid space
0 otherwise. ~10!

The statistical average ofZ ~denoted by an overbar! is the
porositye

FIG. 8. The orientational ordering correlationQ in beds of el-
lipsoids~a!, cylinders~b!, and parallelepipeds~c! vs the aspect ratio
l 1/ l 2 . Same conventions as in Fig. 8.
y
e-
s.
m
d

d

e5Z̄. ~11!

The two-point correlation functionR is defined as

R~r !5
@Z~x!2e#@Z~x1r !2e#

@Z~x!2e#2
. ~12!

It measures the probability of finding the two end points of
segment of lengthr within the same phase, void or solid.
When the medium is macroscopically homogeneous, the s
tistical averages can be replaced by spatial averages. If
material is isotropic,R is a function of the distancer5ir i
only. Grain packings resulting from a deposition process u
der gravity are not expected to be isotropic, but all the hor
zontal directions play equivalent roles. Therefore, in the fo

FIG. 9. The orientational ordering correlationM in beds of el-
lipsoids~a!, cylinders~b!, and parallelepipeds~c! vs the aspect ratio
l 1/ l 2 . Same conventions as in Fig. 8.
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1968 55D. COELHO, J.-F. THOVERT, AND P. M. ADLER
lowing Rxy(r ) and Rz(r ) will denote the correlations
evaluated withr in Eq. ~12! set parallel and normal to th
horizontal plane, respectively.

Note that the functionR includes information relative to
the specific surface area. It may be shown thatS is related to
the initial slope ofR by

S524e~12e!Rv

dR

dr U
r50

. ~13!

This relation holds even for anisotropic media provided t
dR/dr is averaged over all the unit sphere@36#. For packings
of identical grains, Eqs.~6! and~7! can be used to relate th
initial slope ofR directly to the asphericity indexC or to the
hydraulic radiusm:

dR

dr U
r50

52
3

4eCRv
52

1

4fm
. ~14!

The correlationsRxy andRz have been evaluated on all th
samples considered in this paper. For the sake of clarity
brevity, only data relative to series 3 and ellipsoids, for
pect ratios 1/5, 1, and 5, are reported in Fig. 10. The co
lations along the two horizontal directionsx andy were al-
ways found identical within the statistical fluctuations.

Consider first the correlations along an horizontal dir
tionRxy . The distances are scaled by the equivalent radiu
the particles Rv . A first zero crossing at a distanc
r'0.90Rv is followed by an anticorrelation, up tor'2Rv .
No significant correlation remains beyondr'3Rv
~uRu,1022!. For oblate particles withl 1/ l 250.2, the correla-

FIG. 10. The correlationsRxy ~a! andRz ~b! in beds of ellipsoids
vs the reduced distancer /Rv . The aspect ratiol 1/ l 2 is 0.2 ~---!, 1
~—!, and 5~-•-•-!.
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tion curves look like a stretched version of the former. Th
is easily understood for ellipsoids, since they are mostly
ranged with their largest section horizontal~Q>0.9!. The
packed bed is approximately equivalent to a packing
spheres of radiusL with the vertical axis scaled by a facto
L/ l . Thus, the correlationRxy is expected to be the same a
for a packing of spheres with radiusL. Accordingly, the first
zero crossing ofRxy for flat ellipsoids is found atr'0.92L.

Correlations for packings of prolate particles follow a t
tally different trend. The first part of the curves, up to t
first zero crossing, is very close to the curve for unit asp
ratio. Beyond this point, the correlations vanish almost
tally.

Consider now the correlationsRz along the vertical direc-
tion. Note first that for sphere packings,Rz is almost identi-
cal toRxy . Hence, the material is fairly isotropic, although
results from a construction process that is anisotropic
character. This holds in a lesser respect for the other par
shapes; the initial decrease of the curves forRxy andRz are
identical, but the first zero crossing ofRz is slightly shifted
further away from the origin. For the same reason as abo
Rz for oblate ellipsoids can be deduced fromRz for spheres
with radiusl . The first zero crossing is about 1.1l . Finally,Rz
for packings of oblate particles starts with the same ini
slope as for unit aspect ratio, but drops to zero more rap
and vanishes beyond this point.

For spherical grains, positional correlations are very of
characterized by the so-called radial distribution functi
g(r ), which measures the probability of finding the center
a grain at a given distance from a reference one@37–39#:

g~r !5
1

4pr 2
dN~r !

dr
, ~15!

whereN(r ) is the average number of grain centers within
sphere with radiusr around the center of a reference partic
SinceN(r ) may have stepwise variations, the derivative
Eq. ~15! is not always defined in the usual sense. Besid
these discontinuities are a direct measurement of the
coordination number.

Results for ellipsoids are given in Fig. 11. In Fig. 11~a!
the center-to-center distance of contacting grains may v
from 2l to 2L. A sharp increase ofN aroundr52Rv is still
noticeable for oblate and prolate spheroids withL/ l52, but
vanishes for extreme aspect ratios~L/ l55!. The numberN
has been normalized by the solid volume fractionf in Fig.
11~b!. It is compared to its asymptotical long-range value

N/f5~r /Rv!
3. ~16!

For aspherical particles, the departure from this regime v
ishes very rapidly, and becomes negligible forr>3Rv .

A complete exposition and discussion of these data for
shapes can be found in@23#.

IV. TRANSPORT PROPERTIES OF RANDOM PACKINGS

A. Governing equations and methods of solution

In this section, the macroscopic effective coefficients
the basic transport processes by conduction, convection,
dispersion in random packed beds are determined. The
erning equations and their methods of solution are brie



pa
r
in

ou
e
ith
s
e
m
th

ol
it
e

ng
fo
e-
a

ry
to

ac-

tive

t a

ta-

e-
b-
rial

le
ns,

of
-

the

be

at
d

un

55 1969GEOMETRICAL AND TRANSPORT PROPERTIES OF . . .
recalled in this paragraph. They were detailed in earlier
pers @40–42#. In all cases, the macroscopic coefficients a
deduced by integrating the local fields, obtained by solv
the transport equations at the pore scale.

Since the packings are macroscopically homogene
they are considered as infinite periodic media, made of id
tical unit cells. Note that the packings are indeed built w
periodic conditions along the two horizontal direction
However, when a cubic sample is cut from a deposited b
the lower and upper faces do not match each other. This
affect the computation of the transport properties along
vertical axis. The content of a unit cell is discretized intoNc

3

elementary cubes of sizea. The unit cell size isNca5w.
Whenever the center of an elementary cube falls in the s
~fluid! phase, the whole cube is considered as filled w
solid ~fluid!. The following parameters were used in th
computations; for series 1 and 2,Nc564 and 4<Rv/a<8; for
series 3,Nc548 andRv/a53 for calculating the dispersivity
and the permeability andNc564Rv/a54 for the conductiv-
ity.

1. Conduction

The thermal terminology is used here, but the followi
developments are also valid for electrical conduction and
diffusion of Brownian particles whose size is small with r
spect to a typical size of the medium. Electrical and therm
conductions are both governed by a Laplace equation

¹2T50, ~17!

FIG. 11. The numberN of particles within a distancer of a
reference particle in random beds of aspherical ellipsoids as a f
tion of the reduced distancer /Rv . Data in~a! are forl 1/ l 250.2 ~1!,
0.5 ~s!, 1 ~—!, 2 ~d!, and 5~* !. In ~b!, N is divided byf and the
dotted line is the asymptotic law~16!.
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whereT is the local field, together with the no-flux bounda
condition at the wallSp , when the solid phase is assumed
be insulating

m̂•“T50 on Sp , ~18!

wherem̂ is the unit vector normal toSp .
“T is assumed to be spatially periodic with a periodaNc

in the three directions of space. In addition, either the m
roscopic temperature gradient“T or the average heat fluxq̄,

q̄5
1

~aNc!
3 E

s
qR•ds, ~19!

is specified.S is the surface of the unit cell.
These two quantities are related by the symmetric posi

definite conductivity tensors:

q̄52s•“T, ~20!

which depends only upon the geometry of the medium.
In the average, for an isotropic random medium,s is a

spherical tensor equal tos̄ I . For deposited packings, thex
andy directions play equivalent roles, but one may expec
different behavior along thez axis. In the following,s̄xy
denotes the average of the conductivities along thex andy
axes, which were indeed always found equal within the s
tistical fluctuations, ands̄z denotes the conductivity in the
vertical direction.

The Neumann problem@Eqs. ~17!–~19!# is solved via a
second-order finite-difference formulation. A conjugat
gradient method turned out to be very effective for the pro
lem at hand, primarily because it is better suited to vecto
programming than implicit relaxation schemes.

2. Stokes flow

The low Reynolds number flow of an incompressib
Newtonian fluid is governed by the usual Stokes equatio

“p5m¹2v,
~21!

“•v50,

wherev, p, andm are the velocity, pressure, and viscosity
the fluid, respectively. In general,v satisfies the no-slip con
dition at the wall

v50 on S, ~22a!

whereS denotes the surface of the wetted solid inside
unit cell. The volumet0 of this cell is equal to (Nca)

3. Be-
cause of the spatial periodicity of the medium, it can
shown~see@43#! that v possesses the following property:

v is spatially periodic, ~22b!
with periodaNc in the three directions of space.

This system of equations and conditions applies locally
each pointR of the interstitial fluid. In addition, it is assume
that either the seepage velocity vectorv̄ is specified, i.e.,

c-
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v̄5
1

t0
E

]t0

Rv–ds5~a prescribed constant vector! ~23a!

or else the macroscopic pressure gradient“p is specified,

“p5~a prescribed constant vector!. ~23b!

Since the system~21!–~23! is linear, it can be shown thatv̄ is
a linear function of“p. These two quantities are related b
the permeability tensorK such that

v̄52S 1m DK–“p. ~24!

HereK is a symmetric tensor that is positive definite. It on
depends on the geometry of the system and thus can be
plified when the porous medium possesses geometric s
metries. As before, we denote byKxy the average of the
permeabilities along thex and y directions and byKz the
permeability along thez direction.

The numerical method that is used here is a fourth or
finite difference scheme identical to the one first describ
by Lemaıˆtre and Adler@41# and later improved by Coelho
@23#. In order to cope with the continuity equation, the s
called artificial compressibility method was applied with
staggered marker-and-cell~MAC! mesh@44#.

3. Dispersion of a passive solute

The physical situation can be summarized as follows
neutrally buoyant, spherical Brownian particle is injected
some arbitrary interstitial positionR8 at time t50; this par-
ticle is convected by the interstitial fluid and simultaneou
undergoes Brownian motion characterized by the diffus
coefficientD. Within the limit of long times, the moments o
orderm of the probability distribution are defined by@45#

Mm5E
v`

~R2R8!mP~R,t/R8!d3R, ~25!

where ~R2R8!m represents them-adic ~R2R8!•••~R2R8!.
The probability density is denoted byP~R,t/R8!. The two
first moments verify@45#

lim
t→`

dM1

dt
5 v̄* , ~26a!

lim
t→`

1

2

d

dt
~M22M1M1!5D̄* , ~26b!

wherev* is the mean interstitial fluid velocity vector intL ,
the portion of the unit cellt0 occupied by the liquid phase

v̄*5
1

tL
E

tL

v d3R. ~27!

The general expression of the macroscopic dispersion
sor D̄* is given by@45#

D̄*5
D

tL
E

tL

“Bt
•“Bd3R, ~28!
im-
m-

r
d

-

a
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n

n-

whereB is a vector field satisfying

B~R!5B̌~R!2R ~29!

whereB̌ is the spatially periodic component ofB and is the
solution of

v2 v̄*5“•~vB̌!2D¹2B̌ ~30a!

n•“B̌5n on Sp . ~30b!

The flow field was first determined by the routine th
yields permeability. TheB equation was discretized by
second-order finite difference formulation and solved by
conjugate-gradient iterative scheme@42#.

Because the flow provides a preferred direction, the d
persion tensorD̄* in an isotropic medium can generally b
written as

D̄*5S D̄ i*
0
0

0

D̄'
*
0

0
0

D̄'
*
D . ~31!

Thex axis is assumed to be parallel to the interstitial veloc
v̄* , so that they and z axes play an equivalent role. Th
situation is more complex in aspherical packings, and a
matrix is generally expected instead of Eq.~31!. Owing to
the disturbance induced by the mismatch of the upper
lower faces of the unit cell, vertical dispersion was nev
considered. The flow was set successively along thex andy
axes, and the corresponding longitudinal and transverse~in
the horizontal plane! dispersion coefficients were calculate
Their averages are denoted byD̄ i* and D̄'

* , respectively.

B. Conductivity

The conductivities of all the packed beds are plott
against the aspect ratiol 1/ l 2 in Fig. 12. Sample results fo
series 3 are also given in Table II. The curves fors̄xy are
very similar to the porosity curves in the same packings
Fig. 5. For unit aspect ratios,s̄xy is close to 0.2 for beds o
spheres and cylinders, and to 0.24 for beds of cubes, w
have a larger porosity. Our results for sphere packings
slightly lower than the experimental value of 0.25 report
by Pfannkuch@46# and Wonget al. @47# for random packings
with porosities 0.39 and 0.40, respectively. For prolate p
ticles, the conductivity increases withl 1/ l 2 up to about 0.5
for l 1/ l 2510. For oblate cylinders and parallelepipeds,s̄xy
increases also when the particles become flatter. For ob
ellipsoids, the conductivity increases only slightly, as do
the porosity.

The vertical conductivitys̄z behaves differently. For pro
late particles, it is identical tos̄xy , since the packings are
roughly isotropic, as shown by the weak orientational ord
ing ~Figs. 8 and 9! and by the correlationsRxy andRz ~Fig.
10!. However, for oblate cylinders and parallelepipeds,s̄z
remains almost constant whenl 1/ l 2 decreases, although th
porosity increases. This results from the layered structure
the beds, indicated by the parametersQ andM . For oblate
ellipsoids, the porosity does not increase andQ tends toward
one. Consequently,s̄z decreases significantly, down to 0.0
at l 1/ l 250.1.
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The same data fors̄xy are recast in Fig. 13 against the be
porosity e. It is remarkable that all the conductivity values
whatever the particle shape and elongation and for all t
series~i.e., for a weighting lengthR̂ from 0.1L to 2L!, are
fairly well gathered around a single curve. The only exce
tion is the small cloud of points above the curve ate'0.4,
which corresponds to beds of flat ellipsoids, i.e., to high
ordered packings.

The dependence ofs̄xy upon porosity verifies the widely
used Archie’s Law@48#

s̄5aem, ~32!

where the exponentm is the so-called cementation factor. I
has been measured by several authors on different type
material, although always in a porosity range lower tha

FIG. 12. The conductivitiess̄xy ~solid lines! and s̄z ~dotted
lines! of packed beds of ellipsoids~a!, cylinders~b!, and parallel-
epipeds~c! vs the aspect ratiol 1/ l 2 . Data are for series 1~s!, 2
~1!, and 3~* !.
e

-

of
n

ours. Jacquin@49# obtainedm51.64,a50.80 for Fontaine-
bleau sandstones in the range 0.05<e<0.30. Guillot @50#
also observed a power law for sintered glass beads, w
m'1.6 for 0.1<e<0.40. Her results are somewhat scatter
because of sample heterogeneities; her most homogen
samples yieldm'1.4. Wonget al. @47#, using their own data
and those of Johnsonet al. @51# for fused-glass beads, ob
tainedm'2.3,a'3.3 for 0.02<e<0.2 andm'1.5,a'1 for
0.2<e<0.4. Schwartzet al. @52# also obtainedm'1.5 for
e>0.3. Of course, the porosity variations in these media
sult generally from various degrees of consolidation by
mentation~for sandstones! or by sintering~for beads!. There-
fore, results for low porosities cannot be direct
extrapolated to looser unconsolidated packings.

If packings of prolate particles were built with very larg
aspect ratios, the porosity would tend toward unity, as w
ass̄. Thus, if a unique expression of the form~32! is used to
cover the whole range of porosity, the coefficienta has to be
1. A least square fit of the results excluding the orde
packings of oblate ellipsoids yields~cf. Fig. 13!

s̄xy5e1.915. ~33a!

Alternatively, the data can be fitted with a correlation co
ficient r50.975 as

s̄xy50.880e1.72. ~33b!

The data of Kimet al. @33# for beds of mica particles and
mylar disks are also plotted in Fig. 13. The agreement w
our calculations is very good for the mica particles. Myl
disks yield slightly larger conductivities. Ochoa-Tapiaet al.
@53# noted that a cell model is able to predicts̄z , but over-
estimatess̄xy .

C. Permeability

The permeabilities for all the packed beds, normalized
Rv

2, are plotted in Fig. 14 versus the aspect ratiol 1/ l 2 .
Sample results for series 3 are also given in Table II. Th
data can be commented upon in the same way as thos
conductivity in Fig. 12. For unit aspect ratios, the permeab
ity Kxy for spheres and cylinders is found in the ran
231023Rv

2<Kxy<331023Rv
2. Packings of cubes, with a

slightly higher porosity, yield 3.531023Rv
2<Kxy

<4.531023Rv
2. The vertical permeabilityKz is found

equal toKxy for l 1/ l 251, as observed for conductivity. Ou
results for spheres are consistent with many experime
data. Chauveteau and Zaitoun @31# measured
2.331023<K/r 2<4.131023 and 3.331023<K/r 2

<4.731023 for various glass bead packings with porositi
0.40 and 0.41, respectively. Pfannkuch@45# obtained
K/r 251.131023 and 2.331023 for two bead packings with
the same porosity 0.388. Guillot’s@50# measurements fo
bead packings in the porosity range 0.39<e<0.41 yielded
3.231023<K/r 2<6.731023. Finally, Bryantet al. @28# cal-
culatedK/r 252.7231023 by use of a network model base
on the geometrical data of Finney@54# for a monodisperse
sphere packing.

For nonunit aspect ratios,Kxy increases as dids̄xy in Fig.
12, i.e., according to the porosity variations. In particul
permeabilities for oblate ellipsoid packings do not diff
much from that of sphere packings.
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FIG. 13. The conductivitys̄xy of random beds of ellipsoids~s!, cylinders~1!, and parallelepipeds~* ! vs the porositye. The broken line
is ~33!. ~d! and ~%! are Kimet al. @33# data for beds of mica particles and of mylar disks, respectively.

TABLE II. Samples results for packings of series 3. The sample sizew/L, the porositye, the orientational parametersM andQ, the
number of grains in the sampleNu , the conductivitys̄xy , and the permeabilityKxy/Rv

2 are given for various aspect ratiosl 1/ l 2 .

l 1/ l 2 w/L e M Q Nu s̄xy 103Kxy/Rv
2

Ellipsoids
0.1 7.43 0.395 0.986 0.993 592 0.212 1.59
0.2 9.36 0.428 0.880 0.938 559 0.230 2.29
0.5 12.70 0.412 0.702 0.838 575 0.205 2.02
1.0 12.50 0.403 0.072 0.261 279 0.177 2.16
2.0 10.08 0.415 0.116 0.682 572 0.188 1.77
5.0 5.47 0.567 0.143 0.748 423 0.325 7.39
10.0 3.45 0.688 0.097 0.628 305 0.464 19.62

Cylinders
0.1 8.50 0.669 0.365 0.605 324 0.402 16.65
0.2 10.71 0.540 0.506 0.712 450 0.321 8.17
0.5 14.54 0.472 0.086 0.290 516 0.226 3.39
1.0 18.32 0.448 0.002 0.063 540 0.196 2.58
2.0 11.54 0.459 0.008 0.192 529 0.208 2.63
5.0 6.26 0.580 0.089 0.582 411 0.331 8.36
10.0 3.95 0.693 0.024 0.323 300 0.464 20.25

Parallelepipeds
0.1 9.21 0.714 0.358 0.598 280 0.462 22.06
0.2 11.61 0.628 0.276 0.526 364 0.386 14.23
0.5 14.53 0.531 0.072 0.271 459 0.275 5.76
1.0 19.85 0.497 0.012 0.103 492 0.237 4.33
2.0 12.51 0.519 0.005 0.088 470 0.257 4.76
5.0 6.23 0.647 0.035 0.374 345 0.407 15.61
10.0 4.28 0.719 0.056 0.476 275 0.500 25.47
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55 1973GEOMETRICAL AND TRANSPORT PROPERTIES OF . . .
The vertical permeabilityKz also behaves in a way simi-
lar to the vertical conductivitys̄z . For prolate particles,Kxy

andKz are roughly identical since the packed beds are is
tropic. For oblate grains,Kz is lower thanKxy , especially for
flat ellipsoids, which yield the most ordered stratified stru
tures.

The data in Fig. 14 forKxy are recast in Fig. 15~a! as
functions of the bed porositye. Again, it is remarkable that
the simple normalization ofKxy by the square equivalent
radiusRv

2 gathers the results for the various shapes and el
gations around a single master curve. The mode of constr
tion of the packings, with the weighting lengthR̂ in Eq. ~2b!,
does not seem to have any influence when beds with ide
cal porosities are compared.

FIG. 14. The permeabilitiesKxy/Rv
2 ~solid lines! and Kz/Rv

2

~dotted lines! of beds of ellipsoids~a!, cylinders~b!, and parallel-
epipeds~c! vs the aspect ratiol 1/ l 2 . Data are for series 1~s!, 2
~1!, and 3~* !. The dot~d! is the measurement of Thiess-Weesi
et al. @34#.
-

-

n-
c-

ti-

The permeability of packed beds, or more generally
porous media, has been extensively studied in the literat
although in a range of porosities lower than the present o
Several empirical or semiempirical models have been p
posed to rationalize its dependence upon global parame
such as porosity, the hydraulic radius, or the specific surf
area ~cf., for example,@55# or @56#!. The most classica
model is the Carman-Kozeny equation@57#

K5
em2

k
, ~34a!

wherek is the so-called Kozeny constant.k is generally a
few units. For sphere packings, the valuek55 is widely
accepted. With the definition Eqs.~7! and~34a! can be recast
into

K

Rv
2 5

e3

kS2 . ~34b!

Since for well defined particle shapes the specific surf
area is directly related to the porosity by Eqs.~6! and ~34b!
for grain packings may be written as

FIG. 15. Permeability as function of porosity.~a! Kxy/Rv
2 of

random beds of ellipsoids~s!, cylinders~1!, and parallelepipeds
~* ! vs the porositye. The dot is the measurement of Thiess-Wee
et al. @34#. The broken line is Eq.~34c! with k/C2510; the dotted
line is the least square fit Eq.~41!. ~b! The permeabilityKxy/r f

2 of
random beds of prolate particles withL/ l55 ~s! and 10~* ! vs the
porosity e. The broken line is Eq.~37! with k456.1 andk550.64.
The dotted line is Eq.~37! with k4512.6 andk550.707. The dashed
line is Eq.~38!.
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K

Rv
2 5

e3C2

9k~12e!2
. ~34c!

Martys et al. @20# could accurately represent the results
numerical calculations for nine different models of poro
media, including seven types of random sphere packing
the range 0.3<e<0.8 by Eq.~34a! with k52. However, none
of these packings results from a grain deposition proc
with mechanical stability requirements. The looser ones
actually suspensions, and in most cases the grains ar
lowed to overlap. These authors proposed also a unive
scaling law for the porosity-permeability relation, valid in
very wide porosity range 0.02<e,1. However, this law as-
sumes the existence of a percolation threshold, which
exist only if the particles may overlap.

If the Carman-Kozeny model Eq.~34c! applies to the
present packed beds, the unique master curve in Fig. 1~a!
suggests that the Kozeny constant for aspherical grain
related to their asphericity indexC. Namely, if k0 corre-
sponds to spherical particles~C51!, one should have for
other shapes

k5C2k0 . ~35!

Equation~34c! is plotted in Fig. 15~a! with k0510, to fit our
data for sphere packings. This value is much larger than
standardk055, but recall that the actual surface area in t
discretized samples is not equal to the theoretical value~6!.
On one hand, the grain contacts are nonpointwise, wh
lowers the specific area; on the other hand, the discretiza
of the grain surfaces has the opposite effect. As a whole,
discrete estimate ofS overpredicts it by a factor of 1.2 to 1.
in almost all cases, except for very oblate particles where
factor is very scattered. Thus, the use ofk0510 in Eq.~34c!
actually corresponds tok'6 in Eq. ~34b! with the discrete
estimate ofS. As seen in Fig. 15~a!, the Carman-Kozeny
model applies fairly well to these random packings for p
rosities up to 0.55. For looser beds, the model overestim
the permeability.

The discrepancy at high porosities may result from
heuristic argument underlying the Carman-Kozeny equat
The pore space is viewed as a network of capillaries or pl
channels, and this becomes unrealistic for loose beds. In
ticular, packings of very prolate particles are closer to fibro
beds, which have given rise to other types of empirical c
relations~cf. the review in@25#!. The permeability is gener
ally normalized by an equivalent fiber radiusr f :

r r5S f

pL D 1/2, ~36a!

whereL is the total fiber length per unit volume. With ou
notations,

r f5S 23 Rv

L D 1/2Rv . ~36b!

For isotropic fibrous beds, Chen@58# proposed the model

K/r f
25

p~12f!

k4f
ln@k5f

21/2#. ~37!
f
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He could fit a variety of experimental data withk456.1 and
k550.64. This relation is compared to our results for slen
particles withL/ l55 and 10 in Fig. 15~b!. The agreement is
not good if the previous constants are used, but is sign
cantly improved if one setsk4512.6 andk550.707. The ma-
jor drawback of this model is that it predicts a percolati
threshold atf5k5

2, which limits its validity to very high
porosities. Another empirical model due to Davies@59# is
very successful:

K/r f
25@16f1.5~1164f3!#21. ~38!

Very good agreement is observed in Fig. 15~b! for all prolate
grain packings withL/ l>5, without adjusting the constant
in Eq. ~38!.

Another type of porosity-permeability correlation is com
monly used, which does not involve the hydraulic radiu
namely, the power law

Kaen. ~39!

Jacquin’s@49# measurements on various Fontainebleau sa
stones yieldedn'4.15 in a porosity range 0.1<e<0.25.
Guillot @50# obtained the same valuen'4.16 for fused glass
beads with 0.2<e<0.44. Rumpf and Gumpte@60# correlated
numerous permeability measurements for polydispe
sphere packings by the power law

K

D̃2
5

e5.5

5.6
, ~40!

where D̃ is a surface-weighted average grain diameter.
shown by Fig. 15~a!, our data agree with Jacquin’s@49# and
Guillot’s @50# results. A least square fit yields

K

Rv
2 50.117e4.57 ~r50.988!. ~41!

Finally, it has often been attempted to relate the cond
tivity and permeability of porous media. The conductivi
and permeability measurements of Wonget al. @47# in fused
glass bead packings with 0.02<e<0.4 obey the scaling law

Kas̄2. ~42a!

Schwartzet al. @61# obtained the same dependence from
results of numerical simulations on various types of rand
packings whose porosity was varied from 0.1 to 0.55
varying the grain radii and allowing overlaps. Katz an
Thompson@62# obtained quantitative predictions for rock
with the model

K5clc
2s̄, ~42b!

where l c is a characteristic length for the restrictions in t
pore space controlling the flow, measured, for example,
mercury porosimetry. Even if the data in Fig. 16~a! corre-
sponding to the ordered packings of oblate ellipsoids
omitted, our results do not fall between Eqs.~42a! and~42b!.
A least squares fit yields

K50.158s̄2.53 ~r50.984!, ~43!
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in a good agreement with the combination of Eqs.~33b! and
~41!.

An interesting model was proposed by Berryman an
Blair @63#, following Walsh and Brace@64#. If the pore space
is viewed as a plane or circular channel, it may be shown th

K5
m2

b
s̄, ~44a!

whereb is 2 for tubes and 3 for cracks. For well defined
grain shapes, Eq.~44a! may be recast into

K

Rv
2 5

e2C2

9~12e!2b
s̄. ~44b!

The ratioKxy /m
2s̄xy is plotted in Fig. 16~b! as a function of

the aspect ratiol 1/ l 2 for all the packed beds considered in
this paper withm evaluated on the discretized geometries
Except forl 1/ l 250.1, where the data are more scattered, it
always found between 1/3 and 1/2, corresponding to the tw
values ofb mentioned above.

Let us finally compare our results to the few data relativ
to aspherical grain packings in the literature. In their packe
beds of prolate ellipsoids obtained by filtration~see Sec.
III A !, Thiess-Weesieet al. @34# measuredK/Rv

257.731023

for l 1/ l 252.37, e50.54. Since their porosity is higher than
ours for identical particle elongations@cf. Fig. 5~a!# this re-
sult does not fall with our data in the plot ofK/Rv

2 versus
l 1/ l 2 in Fig. 14. However, it agrees very well with the per-

FIG. 16. Relation between permeability and conductivity.~a!
The permeabilityKxy/Rv

2 of beds of ellipsoids~s!, cylinders~1!,
and parallelepipeds~* ! vs the conductivitys̄xy. The dotted line is
Eq. ~43!. ~b! The ratioKxy/m

2s̄xy for packings of ellipsoids~s!,
cylinders~1!, and parallelepipeds~* ! vs the aspect ratiol 1/ l 2 . Data
are for series 1 and 2~—! and series 3~---!.
d

at

.
s
o

e
d

meabilities obtained for beds with the same porosity@Fig.
15~a!#. This illustrates again the fact that the deposited pac
ing transport properties do not depend upon their mode
construction, provided that it does not induce any grain o
dering, when beds with identical porosities and equivale
particle sizeRv are compared.

D. Taylor dispersion

Since it is computationally much more demanding, dis
persion has not been investigated as thoroughly as cond
tivity and permeability. Beds of ellipsoids were considered
with aspect ratiosl 1/ l 250.2, 0.5, 1, 2, and 5. The corre-
sponding porosities were 0.401, 0.425, 0.409, 0.418, a
0.536. The sample size wasw/L520/3, except for spheres,
with w/L515/2. As mentioned in Sec. IV A, the flow direc-
tion was set along thex and y axes. The two axial and
transverse~in the horizontal plane! dispersivity coefficients
were found identical within a few percents. Their average
are denotedD i* andD'

* , respectively.
The results are plotted in Fig. 17~a!, versus the Pe´clet

number Pe~see also Table III!

Pe5
v*Rv

D
, ~45!

FIG. 17. The reduced axialD̄ i* /D ~a! and transversalD̄'
* /D ~b!

dispersion coefficients vs the Pe´clet number Pe. Numerical simula-
tions for spheres~solid line with * ! and ellipsoids withl 1/ l 250.5
~short dashed line with1!, 2 ~long dashed line with1!, 0.2~dashed
line with 3!, and 5~solid line with3!. Experimental data for bead
packings:@66# ~d!; in ~a! @45# for sands~n!, and bead packings
~s!; in ~b! @68# ~n! and @67# ~s! for bead packings.
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TABLE III. Axial and transverse dispersion coefficients in beds of ellipsoids with various aspect r
l 1/ l 2 as functions of the Pe´clet number Pe.

l 1/ l 2 w/L e Pe D̄ i* D̄'
*

0.20 6.67 0.401 0.020 0.498 0.498
0.20 0.506 0.502
2.00 1.09 0.718
20.0 14.8 3.05
200 395 19.6

0.50 6.67 0.425 0.020 0.546 0.546
0.200 0.550 0.550
2.00 0.831 0.664
20.0 9.54 2.12
200 205 12.3

1.00 7.50 0.409 0.100 0.490 0.494
1.00 0.588 0.534
10.0 3.91 1.36
100 85.5 6.51
1000 1250 33.9

2.00 6.67 0.418 0.020 0.455 0.457
0.20 0.460 0.457
2.00 0.796 0.589
20.0 9.74 2.08
200 194 10.4

5.00 6.67 0.536 0.020 0.411 0.412
0.20 0.422 0.415
2.00 1.08 0.588
20.0 18.4 2.27
200 443 13
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whereD is the molecular diffusion coefficient andv* is the
mean interstitial fluid velocity,v*5 v̄/e. The most striking
feature is that, when cast against the Pe´clet number based on
the equivalent radiusRv ~45!, the dispersion coefficients de
pend very little upon the particle shape, except in the dif
sive regime Pe<1 whereD̄ i* and D̄'

* reduce tos̄xy/e. The
axial coefficients for spheres and oblate or prolate ellipso
with L/ l52 are indistinguishable in the log-log plot of Fig
17~a!. The values ofD̄ i* for very aspherical prolate and ob
late grains withL/ l55 are almost identical, but the forme
differ by about a factor 2. The data for the transverse co
ficients in Fig. 17~b! are even closer together. Only the ve
oblate ellipsoids withl 1/ l 250.2 yield coefficients about 50%
larger than the others. Note that the bed of slender ellips
with l 1/ l 255, which has a much larger porosity~0.536 ver-
sus 0.4–0.425!, does not show any peculiar behavior.

We are not aware of any systematic experimental stud
dispersion in beds of very aspherical particles. Howev
measurements of axial dispersion in beds of spheres o
moderately irregular grains such as sands have given ris
numerous publications in the late 1950s. These were
lected by Pfannkuch@46#. This collection was reproduce
with little additions in later reviews@65,55,25,66#. Pfann-
kuch also performed measurements on sands and bead
ings. Since they agree with the previous results, they
reproduced with the later results of Gunn and Pryce@67# and
compared with our calculations in Fig. 17~a!. From the pho-
tographs in Pfannkuch@46#, the typical aspect ratio of his
sand grains may be roughly estimated asL/ l52. His data for
-

s

f-

ds

of
r,
of
to
l-

ck-
re

sands and bead packings are very similar, and lie mo
between our curves forL/ l51 or 2 andL/ l55. Gunn and
Pryce @67# data are lower than our data for spheres by
factor less than 2.

Experimental data for transverse dispersion are fewer,
since they are more recent and have the benefit of impro
measurement techniques, they are considered as valid
accurate as those obtained for longitudinal dispersion@65#.
The data in Fig. 17~b! were obtained by Harleman an
Rumer @68#, Gunn and Pryce@67# and Hanet al. @69# in
sphere packings with porosities 0.36, 0.37, and 0.39–0
respectively. The agreement with our data for spheres
again very good.

It is common practice to relate the dispersion coefficie
to the Pe´clet number by a power law:

D̄*}Pen. ~46!

From the data in Fig. 17~a!, the exponentn for the axial
coefficientD̄ i* , measured around Pe5100, is equal to 1.27
for spheres and moderately aspherical grains and to 1.40
very aspherical ones. A lower exponent is obtained forD̄'

* in
Fig. 17~b!; n is equal to 0.71 for spheres and moderate asp
ratios and to 0.78 for very aspherical particles. A least squ
fit of all the data for Pe>10 yields

D i* /D50.26Pe1.29, r50.98, Pe>10,

D'
* /D50.27Pe0.72, r50.98, Pe>10. ~47!
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The exponents in Eq.~47! are consistent with the experimen
tal determinations for various unconsolidated media.
axial dispersion the most common value is 1.2@70,65#. For
transverse dispersion, the exponent ranges from 0.67@68# to
1.1 @65#. The ratio ofD̄ i* andD̄'

* is very close to the experi
mental observation of Harleman and Rumer@68#:

D̄ i* /D̄'
*}Pe1/2 ~48!

V. CONCLUSION

While the geometric properties of grain packings ob
ously depend on the geometry of the constituting grains
has often been pointed out that they depend also upon
mode of construction. For example, the random sequen
deposition algorithms in this work or in previous contrib
tions yield much smaller porosities for identical particl
than the Monte Carlo simulations of Buchalter and Brad
@14#. The experimental observations are also scattered, du
different packing procedures. Even within the framework
the present algorithm, the weighting lengthR̂, which corre-
e

e

r

-
it
he
al

y
to
f

sponds to specific operating conditions, has some impac
the bed structure.

Perhaps the most striking result in this paper is the f
that the effective transport properties of the packed beds
totally oblivious to these circumstances. Except for obl
ellipsoids, which yield highly ordered structures, all the be
with identical porosities share almost identical conducti
ties, permeabilities, and dispersion coefficients, regardles
grain shape or construction mode. This suggests the e
ence of a very general class of ‘‘random unconsolida
granular media,’’ whose transport coefficients depend o
upon porosity and an equivalent grain sizeRv . This would
explain the good agreement that is always obtained betw
numerical simulations and experimental observations for
the transport processes. This would also explain the var
of situations where simple models like Archie’s law or th
Carman-Kozeny equation can be successfully applied.
computations can be summarized by Eqs.~33!, ~41!, and
~47!, which are verified with a correlation coefficientr larger
than 0.975.
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